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Abstract

Climate change is a global long-term change in temperatures and weather. Climate change is
a worldwide issue that requires proper handling to reduce the negative impact on humans and
the environment. Analyzing historical data is beneficial for studying climate change. Machine
learning and deep learning methods are useful tools for data analysis. The goal of this paper is
to find the best model for forecasting temperatures, a case study in Java Island. Java Island is
the most densely island and the central economy and business in Indonesia. Climate change
research in Java Island is important for sustainability. It runs several algorithms i.e., Gradient
Boosting, AdaBoost, XGBoost, CatBoost, Light GBM, Random Forest, Support Vector
Regression, Extreme Learning Machine, Long Short-Term Memory, Gated Recurrent Unit,
Bidirectional Long Short-Term Memory, and Bidirectional Gated Recurrent Unit. The
experiment uses a historical daily time series of temperatures from 1 January 1990 to 31
December 2024. In general, the experimental results show that Gradient Boosting produces
the highest average coefficient of determination R? scores of 0.34 and the lowest Mean
Absolute Error scores of 0.69. Long Short-Term Memory and Gated Recurrent Units are the
deep learning models that also work well for forecasting. According to the experimental results,
in some cases, machine learning models outperform deep learning models and vice versa.
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INTRODUCTION (CALISTO MT 10)
Climate change is a global long-term
change in temperatures and weather (Santos &

Bakhshoodeh, 2021; Abbass et al., 2022). Global
warming and climate emergency are used as
synonyms for climate change. Climate change
affects humans and the environment, so it is one
of the global problems that needs proper
handling. Some of the effects of climate change
are extreme weather, drought, flood, food,
disease, and food security. A study found that the
cost of extreme events caused by climate change
is around US$143 billion per year (Newman &
Noy, 2023). A study that applies a combination
of projections of climate change models shows
that increasing 3°C causes global average losses
by 10% of global domestic product, especially in
poorer and low-latitude countries (Waidelich et
al., 2024).

In Indonesia, some research has been
conducted on climate change studies. Recent
studies have been analysing meteorological data
from some regions in Indonesia and found that
increasing temperatures and decreasing wind
speeds are happening in some places
(Handhayani, 2023; Handhayani & Rusdi, 2023;
Andrian et al., 2024; Handhayani & Lewenusa,
2024). A study implementing K-Means Using
Dynamic Time Warping to cluster cities in Java
Island shows that some cities, Surabaya,
Semarang, Jakarta, Bandung, Yogyakarta, and
Serang, have increasing temperatures
(Handhayani & Rusdi, 2023). An analysis of
meteorological data in the East Indonesia region,
implementing clustering methods to cluster cities
based on daily time series meteorological data
histories (Andrian et al., 2024). Several cities in
Sumatra have an annual trend of increasing
temperatures and decreasing wind speed
(Handhayani & Lewenusa, 2024).

Machine learning and deep learning
methods are powerful tools for climate change
analysis (Milojevic-Dupont & Creutzig,
2021; Bamal et al., 2024; Ladi et al., 2022;
Alonso-Robisco et al., 2024). Machine learning is
a part of artificial intelligence that empowers
computers and machines to learn like humans,
and it can improve its performance through
experience with more data. Deep learning is a
branch of machine learning that utilizes
multilayered neural networks to simulate the
human brain's decision-making process. Machine
learning and deep learning methods are
applicable to supervised learning, unsupervised
learning, and semi-supervised learning. Some
machine learning methods for regression are
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Support Vector Regression (SVR) (Bansal et al.,
2021), Random Forest Regression (Doz et al.,
2023; Gaertner, 2024), Adaboost, XGBoost
(Wen et al., 2022), Gradient Boosting (Di Persio
& Fraccarolo, 2023), and Linear Regression
(Yuan, 2023). Deep Learning methods for
regression are Long-Short Term Memory
(LSTM), Bidirectional Long-Short Term
Memory (BiLSTM), Gated Recurrent Unit
(GRU) (He et al., 2022), and Bidirectional Gated
Recurrent Unit (BiGRU) (Chen et al., 2021).

Java Island is part of Indonesia's territory
and is the most densely populated. Some cities on
Java Island developed into central districts for
education, economy, and industry. In the
agricultural sector, Java Island is central to paddy
production, which is the primary food source for
Indonesians (Ishak et al., 2024). Analyzing
temperatures on Java Island is crucial for
understanding climate change in this region.
Deep Learning is a sophisticated model for
supervised learning jobs. The research question
is whether deep learning models completely
outperform conventional machine learning
models for forecasting temperatures from time
series data. The goal of this paper is to analyze
the performance of machine learning and deep
learning methods for forecasting temperatures in
Java Island. It is beneficial to identify the most
suitable model for temperature prediction. This
paper uses historical time series temperature data
from 14 cities on Java Island.

RESEARCH METHODS

The research workflow is described in
Figure 1. It contains data collection, data
preprocessing, model training, and model
evaluation. The data is the historical daily time
series temperatures collected from trustworthy
sources. It collects data from several places in
Java Island. The preprocessing step contains
feature selection and missing values handling. It
uses minimum, maximum, and average
temperatures for experiments. Missing values
handling is a step in examining the missing data
and filling it up to create the completed data. It
implements the forward and backward functions
from standard Python to fill up the missing data.
The output from this step is completed data. The
data is then divided into the training sets and the
testing sets. The training sets are used to train the
models. It runs machine learning algorithms
(Gradient Boosting (GB), Ada Boost, XG Boost,
Cat Boost, Light GBM, Random Forest, Support
Vector Regression, and Extreme Learning
Machine) and deep learning algorithms (Long
Short-Term Memory, Gated Recurrent Unit,
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Bidirectional Long Short-Term Memory, and
Bidirectional Gated Recurrent Unit). The trained
model is evaluated using testing sets. The
performance of those algorithms is measured
using Mean Absolute Error, Root Mean Squared
Error, Mean Absolute Percentage Error, and
Coefficient of Determination.

Data Collection

!

Data Preprocessing

]

Model Training

1

Model Testing

l

Model Evaluation

Figure 1. Research workflow

Some machine learning methods for
forecasting are Gradient Boosting (GB), Ada
Boost, XG Boost, Cat Boost, Random Forest,
Support Vector Regression, and Extreme
Machine Learning (ELM). Deep learning
methods for forecasting are Long Short-Term
Memory (LSTM), Bidirectional Long Short-
Term Memory (BiILSTM), Gated Recurrent Unit
(GRU), and Bidirectional Gated Recurrent Unit
(BiGRU).

Gradient Boosting (GB) regression is a
gradient-based boosting algorithm designed for
regression problems (Mahamat et al., 2024). Let
M be an ensemble of weak learners and let weak
learners be h,,(x) on (X,r). The Gradient
Boosting regressor can be defined using equations
(1), (2), and (3) (Mahamat et al., 2024).

=Y~ Vi 1)
Update ensemble

Vi =Pio1 +axhp(x) @

Prediction $ = Y[a,, * h,,(X)] (3)
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Extreme gradient boosting (XGBoost)
implements gradient boosting machines (gbm) for
supervised learning problems (Ibrahem Ahmed
Osman et al., 2021). The decision tree is the basis
for AdaBoost and Random Forest. Adaptive
Boosting (AdaBoost) runs recursively training-
based models on different versions of data (Ozen,
2024). For every iteration, AdaBoost updates the
weights of the training data based on the error
rate from the lower-level model. A machine
learning approach that increases the accuracy and
robustness of prediction by combining the
outputs of many models is called ensemble
learning (Ozen, 2024). Random forest is a
particular type of ensemble learning algorithm.
Random Forest Regression implements many
decision trees trained on a random subset of data
(Ozen, 2024; Sopany et al., 2025). CatBoost is
developed from the Gradient Boosting algorithm
(Hancock & Khoshgoftaar, 2020). It started with
Bootstrap sampling. Different training datasets
are formed by rows of data that are selected with
replacement. Light Gradient Boosting Machine
(Light GBM) is another version of the Gradient
Boosted Decision Tree algorithm (Hancock &
Khoshgoftaar, 2020).

Support Vector Regression (SVR) is a
variant of the Support Vector Machine (SVM)
algorithm that works for regression problems
(Handhayani et al., 2024; Purba et al., 2025).
Several kernel functions, i.e., Linear kernel, RBF
kernel, and Polynomial kernel.

A neural network is an algorithm
developed to imitate the structure of biological
neural networks in the nerve system of the human
brain. A neural network is a foundation for some
algorithms, e.g., extreme learning machines, long
short-term memory, and gated recurrent units. A
neural network consists of neurons, connections,
and weights. An extreme learning machine
(ELM) is a neural network algorithm that
implements a single hidden-layer feedforward
neural network (Wang et al., 2022). ELM sets
random values to the weights between the input
and hidden layers, as well as the biases in the
hidden layer. It uses a nonlinear activation
function in the hidden layer.

Long Short-Term Memory (LSTM) is an efficient
gradient-based method (Handhayani, 2023).
LSTM refers to a standard recurrent neural
network (RNN) that has long-term memory and
short-term memory. Bidirectional Long Short-
Term Memory (BiLSTM) is a neural network
that contains two LSTM layers. BiLSTM
connects two hidden layers that are opposite into
a single output. BiLSTM utilizes pre- and post-
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context by processing the information from two
directions using two separate hidden layers.

A gated recurrent unit (GRU) is a type of
neural network that implements a gating
mechanism (Handhayani, 2023). A Bidirectional
Gated Recurrent Unit (BiGRU) contains two
GRUs that handle the input in a forward
direction, and the other in a backward direction
(Duan et al., 2023).

Coefficient of determination, mean
absolute error (MAE), and root mean square
error (RMSE) are used to evaluate the
performance of the regressor (Handhayani, 2023;
Handhayani et al., 2022; Chicco et al., 2021).
The best value of R? is +1, and the worst value is
—oo, MAE and RMSE have the best value are 0
and the worst value is +oo.

RESULTS AND DISCUSSION

The dataset is historical time series data
from 1 January 1990 to 31 December 2024. The
dataset is collected from the Indonesian
Meteorology, Climatology, and Geophysics
Agency. The dataset contains minimum
temperatures, maximum temperatures, and
average temperatures in degrees Celsius. The

data is collected from 14 cities across Java Island
and its surrounding areas, including Bandung,
Banyuwangi, Malang, Bogor, Cilacap, Gresik,
Jakarta, Majalengka, Nganjuk, Semarang,
Sumenep, Tangerang, Tangerang Selatan, and
Tegal. The dataset is divided into a training set
and a testing set. The training set contains data
from 1 January 1990 to 31 December 2023, and
the testing set consists of data from 1 January
2024 to 31 December 2024.

Different models work differently for each
dataset from each city. Figures 2, 3, and 4
illustrate the forecasting results using the best
model. Note that the best model for each variable
in each city is different. For minimum
temperature predictions, Gradient Boosting (GB)
performs the best for Bandung, Gresik, Jakarta,
Majalengka, and Nganjuk. ELM works well for
Banyuwangi, Malang, Semarang, Sumenep, and
Tangerang. GRU and BiGRU have the best
performance for Bogor and Cilacap, respectively.
The deep learning models (LSTM, GRU, and
BiGRU) are powerful when predicting the
maximum temperatures. Light GBM is suitable
for forecasting minimum, maximum, and
average temperatures in Tangerang Selatan.

Table 1. The Average Values of Evaluation Metrics for Each Algorithm

No Algorithm MAE RMSE R’ Running Time
1 SVR Linear 0.79 0.98 0.13 0.54
2 SVR RBF 0.82 1.03 0.06 0.76
3 Gradient Boosting 0.69 0.89 0.34 6.30
4 XG Boost 0.75 0.97 0.22 0.20
5 Ada Boost 0.83 1.03 0.10 1.01
6 Cat Boost 0.92 1.11 -0.06 2.74
7 Light GBM 0.70 0.90 0.33 0.16
8 Random Forest 0.80 0.99 0.17 1.50
9 ELM 0.87 1.05 -0.04 0.02
10 LSTM 0.75 0.95 0.22 24.07
11 BiLSTM 0.83 1.03 0.06 21.07
12 GRU 0.75 0.95 0.22 22.97
13 BiGRU 0.79 0.98 0.14 19.78
Table 2. The Best Models for Each City for Predicting the Minimum Temperatures
No City MAE RMSE R’ Algorithm
1 Bandung 0.59 0.78 0.52 Gradient Boosting
2 Banyuwangi 0.67 0.83 0.35 Light GBM
3 Bogor 0.67 0.88 0.28 BiGRU
4 Cilacap 0.59 0.77 0.52 GRU
5 Gresik 0.79 1.00 0.36 Gradient Boosting
6 Jakarta 0.79 0.94 0.16 Gradient Boosting
7 Majalengka 0.73 1.00 0.20 Gradient Boosting
8 Malang 0.65 0.68 0.83 ELM
9 Nganjuk 0.67 0.87 0.30 Gradient Boosting
10 Semarang 0.69 0.87 0.41 Light GBM
11 Sumenep 0.74 0.93 0.88 Gradient Boosting
12 Tangerang 0.50 0.63 0.60 ELM
13 Tangerang Selatan 0.69 0.88 0.22 Light GBM
14 Tegal 0.61 0.55 0.51 SVR Linear
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Table 3. The Best Models for Each City for Predicting the Maximum Temperatures

No City MAE RMSE R’ Algorithm
1 Bandung 0.58 0.78 0.52 LSTM
2 Banyuwangi 0.59 0.76 0.45 GRU
3 Bogor 0.66 0.88 0.29 LSTM
4 Cilacap 0.63 0.79 0.49 GRU
5 Gresik 0.75 0.93 0.41 GRU
6 Jakarta 0.79 0.94 0.16 Gradient Boosting
7 Majalengka 0.71 0.97 0.26 LSTM
8 Malang 0.76 0.99 0.58 LSTM
9 Nganjuk 0.67 0.87 0.30 Gradient Boosting
10  Semarang 0.67 0.72 0.44 GRU
11 Sumenep 0.75 0.93 0.18 BiGRU
12 Tangerang 0.65 0.84 0.30 LSTM
13 Tangerang Selatan 0.69 0.88 0.22 Light GBM
14  Tegal 0.61 0.75 0.51 SVR Linear
Table 4. The best Models for Each City for Predicting the Average Temperatures
No City MAE RMSE Algorithm
1 Bandung 0.59 0.79 0,52 Gradient Boosting
2 Banyuwangi 0.61 0.77 0.44 GRU
3 Bogor 0.66 0.87 0.29 GRU
4 Cilacap 0.62 0.79 0.49 GRU
5 Gresik 0.77 0.97 0.39 LSTM
6 Jakarta 0.78 0.94 0.16 Light GBM
7 Majalengka 0.68 0.96 0.26 Light GBM
8 Malang 0.74 0.99 0.58 Light GBM
9 Nganjuk 0.67 0.87 0.29 Gradient Boosting
10  Semarang 0.69 0.85 0.41 LGBM
11 Sumenep 0.74 0.93 0.19 Gradient Boosting
12 Tangerang 0.66 0.84 0.29 LSTM
13 Tangerang Selatan 0.69 0.88 0.22 Light GBM
14  Tegal 0.59 0.74 0.52 GRU

Overall, Gradient Boosting (GB), LSTM, and
GRU produce the highest R? for 9 experiments,
respectively. ELM has 7 experiments, and Light GBM
has 4 experiments with the highest R? scores. SVR
Linear and BiGRU achieve the highest R? scores in two
experiments. The best model for forecasting
temperatures is beneficial for future climate
projections. The experimental results indicate that deep
learning models do not consistently outperform
conventional machine learning models in forecasting
temperatures. This study proves that the compatibility
between the model and data cannot be generalized.
The presence of deep learning models for regression
problems complements the machine learning models.
In some cases, machine learning and deep learning
models possibly outperform each other.

The experiment was done individually for each
city using the training and testing sets in the same
hardware environment for fairness. This paper
observes the performance of each proposed method for
forecasting the minimum, maximum, and average
temperatures to find the best model for each city. The
running time is computed from the average running
time of building the model, training, and prediction.

The experiments run 13 algorithms, i.e.,
Support Vector Regression using Linear Kernel (SVR
Linear), Support Vector Regression using RBF Kernel
(SVR RBF), Gradient Boosting, Ada Boost, Cat Boost,
XG Boost, Light GBM, Random Forest, ELM, LSTM,

GRU, BIiLSTM, and BiGRU. The best model is
selected based on the MAE, MAPE, RMSE, and R’
values. The best model has the lowest MAE, RMSE,
and MAPE scores, as well as the highest R score.
According to the experimental results, the top 3 best
machine learning models for forecasting temperatures
are Gradient Boosting, Light GBM, and XG Boost.
The best deep learning models are LSTM and GRU,
where they have similar performance evaluation
scores. Gradient Boosting outperforms other methods.
Machine Learning algorithms always run faster than
deep learning models. Comparing the running time
during creating the model, training, and prediction,
ELM runs fastest, and LSTM runs slowest. Machine
Learning models for forecasting run faster than Deep
Learning models. It is understandable because the
Deep Learning models run iteratively to fit the weights
to reach the lowest error. Figure 5 shows the annual
trend of temperatures. The annual trend of minimum,
maximum, and average temperatures from 1990 to
2024 in each city shows that an increasing trend occurs
in some areas. The increasing trend of minimum
temperatures occurred in Bogor, Cilacap, Gresik,
Jakarta, Majalengka, Nganjuk, Semarang, Tangerang
Selatan, and Tegal. Bandung, Malang, Bogor,
Semarang, Sumenep, Tangerang, and Tegal have a
rising trend of annual maximum temperatures. The
trend of average temperatures increases in Bogor,
Malang, Jakarta, Majalengka, Semarang, Sumenep,
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Figure 4. Forecasting average temperatures

CONCLUSION

In conclusion,

deep

learning models
complement machine learning models for solving
regression problems. In some cases, the machine
learning models outperform deep learning models
and vice versa. In the study of forecasting
in Java Island from 14 cities
(Bandung, Banyuwangi, Malang, Bogor, Cilacap,

Gresik, Jakarta, Majalengka, Nganjuk, Semarang,
Sumenep, Tangerang, Tangerang Selatan, and
Tegal), Gradient Boosting, LSTM, and GRU
produced lower MAE, MAPE, and RMSE scores
and obtained higher R? scores than other models.
The optimal model, which produces a lower error
score for forecasting temperatures in each city, is
different. Overall, Machine Learning models run
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Figure 5. The annual trend of temperatures.
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faster than Deep Learning models. For future
research, it is important to apply integration
analysis of other meteorological variables, e.g.,
precipitation, wind speed, and humidity, for a
comprehensive study of climate change.
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