



**IEEE SMC**

IEEE  
Systems, Man, and Cybernetics Society

Indonesia Chapter  
Systems, Man, and Cybernetics Society

**IEEE ICECOS 2024**  
Universitas Sriwijaya  
IEEE Student Branch

# ICECOS

**The 4th International Conference  
on Electrical Engineering and  
Computer Science**

**September 25 – 26, 2024**

**PROCEEDING**

**ISBN : 979 - 8 - 3503 - 6825 - 3**



**CoCIS**  
Control and Computational Intelligent Systems



Communication Network  
and Information Security Research Group



**2024 International Conference on Electrical Engineering and Computer Science (ICECOS) took place in Palembang, Indonesia (Hybrid), on September 25-26, 2024.**  
ISBN: 979-8-3503-6825-3

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at [pubs-permissions@ieee.org](mailto:pubs-permissions@ieee.org). All rights reserved.

Copyright ©2024 by IEEE.

# INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS) 2024

## Steering Committee

Yanuarsyah Haroen, Institut Teknologi Bandung

Zainuddin Nawawi, Universitas Sriwijaya

Suwarno, Institut Teknologi Bandung

Hussein Ahmad, Universiti Teknologi Malaysia (UTM), Malaysia

Anton Satria Prabuwono, King Abdulaziz University

Muhammad Abu Bakar Sidik, Universitas Sriwijaya

## General Chair

Herlina, Universitas Sriwijaya, Indonesia

## General Co-chairs

Deris Stiawan, Universitas Sriwijaya, Indonesia

Zolkafle Buntat, Universiti Teknologi Malaysia, Malaysia

Deris Stiawan, Universitas Sriwijaya, Indonesia

Silfani Sandra, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## Secretary

Syarifa Fitria, Universitas Sriwijaya, Indonesia

M. Fikri Aulian, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## Publication Chairs

Deris Stiawan, Universitas Sriwijaya, Indonesia

Badar Alpian, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## Finance Chairs & Treasurer

Suci Dwijayanti, Universitas Sriwijaya, Indonesia

Shalsabila Puteri, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## Public Relation Chairs

Huda Ubaya, Universitas Sriwijaya, Indonesia

Nurul Afifah, Universitas Sriwijaya, Indonesia

## Technical Program Chairs

Bhakti Yudho Suprapto, Universitas Sriwijaya, Indonesia

Mohd. Riduan Ahmad, Universiti Teknikal Malaysia Melaka, Malaysia

Krutthika Hirebasur Krishnappa, Southern University and A&M College, USA

Aditya Afriansyah, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## **International Scientific Committee**

Masashi Unoki, Japan Advanced Institute of Science and Technology (JAIST), Japan

Flah Aymen, Middle East University, Amman, Jordan

Leong Wai Yie, INTI International University, Malaysia

Geovanni Pau, Kore University of Enna, Italy

Sunu Wibirama, Universitas Gadjah Mada, Indonesia

Hsin Si, Myanmar Aerospace Engineering University, Myanmar

Edision Orlando Cobos Torres, Texas A&M University, USA

Wahyu Caesarendra, Universiti Brunei Darussalam, Brunei Darussalam

Mitsunori Ozaki, Kanazawa University, Japan

Zainal Salam, Universiti Teknologi Malaysia (UTM), Malaysia

Mohd. Hafizi Bin Ahmad, Universiti Teknologi Malaysia (UTM), Malaysia

Joshua Abolarinwa, Namibia University of Science and Technology

Biju Baburajan, Longwood University, Virginia, USA

Zouari Farouk, National Engineering School of Tunis (ENIT), Tunisia

Shashikanth Gangarapu, Apple Inc.

Krutthika Hirebasur Krishnappa, Southern University, USA

Filbert Juwono, Xi'an Jiaotong - Liverpool University, China

Pankaj Kulkarni, University of Pune, India

Thulasyammal Ramiah Pillai, School of Computing and IT, Taylors University, Malaysia

T D SUBASH, Zhejiang Ocean University, China

Enyonam Kpekpena, President of the. Women in Engineering (WinE), Ghana

Wendy Yeo, Monash University Malaysia

Wai Yeng, Monash University Malaysia

Nassirah Laloo, University of Technology, Mauritius

Sandhya Armoogum, University of Technology, Mauritius

Lee Hoong Pin, INTI International University, Malaysia

Muhsin Izzat, INTI International University, Malaysia

Heng Lee Sun, Director HLS Pro Construction Sdn Bhd, Malaysia

Wong Chee Fui, Technological Association Malaysia

Engr Yetunde Holloway, Nigeria Society of Engineers, Association of Professional Women Engineers, World Federation of Engineers

Lee Chien Sing, Sunway University, Malaysia

Denesh Sooriamoorthy, School of Engineering, Asia Pacific University Malaysia

Chia Chao Kang, Xiamen University, Malaysia

Erick Purwanto, XJTLU, China

Wei kitt wong, Curtin University, Malaysia

### **Local Chairs**

Ahmad Heryanto, Universitas Sriwijaya, Indonesia  
M. Qurhanul Rizkie, Universitas Sriwijaya, Indonesia  
Adi Hermansyah, Universitas Sriwijaya, Indonesia  
Kemahyamto Exsaudi, Universitas Sriwijaya, Indonesia  
Ahmad Zarkasi, Universitas Sriwijaya, Indonesia  
Pacu Putra, Universitas Sriwijaya, Indonesia  
Iman Saladin Azhar, Universitas Sriwijaya, Indonesia  
Abdurahman, Universitas Sriwijaya, Indonesia  
Muhammad Karisma, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)  
Muhammad Akbar, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)  
Syanti Prasetyani, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)  
M. Apriyadi Tri Putra, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)  
Muhammad Ari Anggara, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)  
Muhammad Rizal Mutaqin, Universitas Sriwijaya, Indonesia (IEEE SB Universitas Sriwijaya)

## Table of Content

|                                                                                                                      | Pages |
|----------------------------------------------------------------------------------------------------------------------|-------|
| <b>Copyright</b>                                                                                                     | ii    |
| <b>ICECOS 2024 Committee</b>                                                                                         | iii   |
| <b>International Scientific Committee</b>                                                                            | iv    |
| <b>Local Chairs</b>                                                                                                  | v     |
| <b>Table of Content</b>                                                                                              | vi    |
| A Big Data, Bigger Impact: A Comprehensive Review of Machine Learning Advancements                                   | 1     |
| Low-Cost SDR Spectrum Analyzer and Radio Receiver Using USRP N210, GNU Radio, and Raspberry Pi5                      | 7     |
| Theoretical Study to Support Proposed Framework for Spatial Modeling of PM2.5 Concentration in Pekanbaru City        | 13    |
| Image Denoising and Enhancement for Planktonic Foraminifera Fossil                                                   | 19    |
| A Comparative Assessment SARIMA and LSTM Models for the Gurugram Air Quality Index's Knowledge Discovery             | 26    |
| Blockchain Technology Adoption Model to Increase Transparency in the Use of SME Funding Assistance                   | 32    |
| Implementation of Convolutional Neural Network for Classification of Helminths Egg Based on Image Processing         | 38    |
| Design and Implementation of a WiFi Password Cracking Tool Based on the Evil Twin Method                             | 44    |
| Fresh Food Product Insurance Model With Blockchain Technology                                                        | 49    |
| AI-Quran Recitation or Sound Processing Analysis: A Systematic Literature Review on Methods                          | 54    |
| Sentiment Analysis of Israeli-Palestinian Conflict on Indonesian Tweets Using Machine Learning                       | 59    |
| Internet Gaming Disorder (IGD) Prevalence, Gaming Behavior and Its Correlation With IGD Among Indonesian MOBA Gamers | 65    |
| Design of Zero Current Switching Flyback Converter for Power Efficiency in Solar Power System                        | 71    |
| Enhancing Image Captioning Performance With VGG16 Feature Extraction and LSTM Sequence Processing                    | 77    |
| Learning Models for Software Feature Extraction From Disaster Tweets: A Comparative Study                            | 83    |
| CNN Performances for Stunting Face Image Classification                                                              | 89    |
| Reliability Analysis of Kediri Feeder Using Section Technique and Energy Loss Evaluation at PT. PLN Rayon Ampera     | 95    |

|                                                                                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Energy Efficiency in Sustainable Software Development: Clean Code Approaches                                                                          | 101 |
| Precision Fertilization Using Multispectral Imaging: Imbalanced Data Handling Using SMOTE in the Classification of Rice Plant Fertilizer Requirements | 106 |
| Predicting Blood-Brain Barrier Penetration of Drug Candidates Using a Cuckoo Search-Ensemble Method                                                   | 112 |
| Design of a Prototype Watering System and Water Drop Detection in Aeroponic Plants Based on PLC - SCADA                                               | 118 |
| Sentiment Analysis of Zoom Application Using Support Vector Machine                                                                                   | 124 |
| Tweet-Based Depression Detection Using BERT Optimized by Grey Wolf Optimization                                                                       | 129 |
| Ant Colony Optimization-Based Path Planning for Autonomous Vehicle Navigation Systems                                                                 | 135 |
| Implementation of Neural Machine Transliteration From Komering Language to Indonesian Language Using Recurrent Neural Network (RNN) Model             | 141 |
| A Performance Analysis of Hyperledger Fabric for Blockchain-Based Concert Ticketing Systems                                                           | 147 |
| Investigating Gamification in Adolescent Health Service Apps: A Robust Measurement Strategy for Indonesian Programs                                   | 152 |
| Designing Model Tools of Requirement Elicitation Process for ADHD Children's Learning Application                                                     | 157 |
| Robot for Underground Mining Area Observation                                                                                                         | 163 |
| Evaluation of Electrical Power Losses on Distribution Lines at the Panton Labu Substation                                                             | 167 |
| Adoption of Renewable Energy Technology in Society for Sustainability                                                                                 | 171 |
| Predicting Software Size Based on Conceptual Data Model (Case Study: Shrimp Pond System Management)                                                   | 175 |
| Fiber-Free Space Optic Improved With Dispersion Compensation of Fiber Bragg Grating and EDFA for A Point to Point Communication                       | 179 |
| Optimized Design of Solar and Wind Hybrid Power Plants                                                                                                | 183 |
| Early Detection of Diabetes With Decision Support: Integrating Sixty-Five Symptoms Through a Forward-Chaining Expert System                           | 189 |
| Bagging-Based Disease Prediction Using Naïve Bayes, Decision Tree, and Support Vector Machine on Kaggle Dataset                                       | 195 |
| Classification of Covid Image Based on Deep Learning Model GoogleNet and ResNet-50                                                                    | 199 |
| Inventory Forecasting Model for Limited Dataset (Case Study: Gas Station in Pontianak)                                                                | 205 |
| Increasing the Accuracy of Classification Models With a Scaler for Bus Rapid Transit (BRT) Reliability Values                                         | 211 |

|                                                                                                                                              |     |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Implementation of ANN Optimized by Simulated Annealing in Predicting Side Effect: Case Study Eye Disorders                                   | 217 |
| Question Answering System With Unanswerable Question Recognition                                                                             | 222 |
| The Influence of QRIS Payment Method Usage and Effectiveness Level on Small and Medium Enterprise (SME)                                      | 228 |
| Knowledge Discovery of Application Review Using Word Embedding's Comparison With CNN-LSTM Model on Sentiment Analysis                        | 234 |
| A Deep Autoencoder-Based Method for Detecting Mismatch Faults in Photovoltaic Modules                                                        | 239 |
| Utilization of Augmented Reality: Innovative Solutions to Enhance Customer Experience in the Automotive Industry                             | 245 |
| Analyzing the Effectiveness of MobileNetV2, Xception, and DenseNet for Classifying Chest Diseases: Pneumonia, Pneumothorax, and Cardiomegaly | 251 |
| Implementation of Hybrid Energy Powered Aerator for Sustainable Technology in Coastal Area                                                   | 256 |
| Learning Dependence Relationships of Air Pollution and Meteorological Conditions in Yogyakarta Using Bayesian Network                        | 262 |
| Modeling and Simulation of Traffic Flow With Obstacle Using Second-Order Polynomial Regression and Lax-Wendroff on Bojongsoang               | 268 |
| Early Detection of Heart Rate Conditions in Autistic Children Using IoT-Based Systems                                                        | 274 |
| Optimizing Web Server Performance: A Comparative Analysis of Central Manager and Round Robin Load Balancing Algorithms                       | 280 |
| Investigation of Runner Diameter Turgo Turbine in Pico Scale: Experimental Study                                                             | 286 |
| Integration of Soft System Methodology and Scrum for Housing Administration System                                                           | 292 |
| Greedy Approach for Optimizing Image View Layout on Various Sizes of 2D UI Container                                                         | 298 |
| Calculating Software Size Based on Conceptual Data Model Using Data Complexities of Fishermen Information System                             | 304 |
| Systematic Literature Review of the Use of Blockchain as a Secure Technology in e-Ticketing Systems                                          | 308 |
| Internet of Things for Real-Time Monitoring of Water Quality With Integrated Temperature, pH, and TDS Sensors                                | 314 |
| Design of Web-Based Key Management System Application Based on NIST SP 800-57 Recommendations                                                | 320 |
| Speech Recognition for Intelligent System in Service Robots: A Review                                                                        | 326 |
| An Improvement on Zero Down Time Network System Using Two Power Transformers at the New Jakabaring Substation                                | 332 |
| Design and Development of Magnetic Field Derivative Direction Finder for Lightning Discharges                                                | 338 |

|                                                                                                                                                  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Utilizing Deep Reinforcement Learning for Enhanced Microgrid Voltage Regulation Under Fluctuating Load Conditions                                | 343 |
| Caching Cluster of Distributed MQTT Broker on Containerized Architecture                                                                         | 349 |
| Analysis and Simulation of Vehicle Velocity-Density Function on Bojongsoang Highway                                                              | 354 |
| Enhanced Smoothness of Dynamixel XL320 Servo Motors: A Comparative Study of Sinusoidal Motion Profiles and PID Control                           | 360 |
| Development of an Autonomous Grasping-Based Pole Climber Robot                                                                                   | 365 |
| Exploring Deep Insights From Vast Data: An Overview of Deep Learning Techniques for Big Data                                                     | 370 |
| Involving Data Complexity in Software Size Estimation Based on Conceptual Data Model (Case Study: Catering Management Information System)        | 376 |
| Model and Simulation of Vehicle Velocity-Density With Obstacles Using Multiple Linear Regression                                                 | 380 |
| Atmospheric Pressure Plasma Jet Implementation in Suppressing White Bread's Mold                                                                 | 385 |
| Large Language Model Employment for Story Point Estimation Problems in AGILE Development                                                         | 391 |
| Prediction of Signal-Strength and Pathloss From Radio Wave Propagation for WSN Applications in North-Kalimantan Shrimp Ponds                     | 399 |
| Urgency Detection of Events Through Twitter Post A Research Overview                                                                             | 406 |
| Sustainable Forest Fire Detection: A Mapping Through Bibliometrics and Scientific Knowledge Research                                             | 412 |
| CricPredict: Resource-Aware Prediction of T20 Cricket Match                                                                                      | 418 |
| A Comprehensive Evaluation of Machine Learning Models for Sentiment Analysis in Employee Reviews                                                 | 424 |
| Discharge Current Characteristics of Different Electrode Materials for Ozone Generation                                                          | 430 |
| Effect of Formic Acid ( $\text{CH}_2\text{O}_2$ ) Exposure on the Initial Electrical Treeing Breakdown in Epoxy Resin Insulation ApplicationsLat | 434 |
| Modified Diode Clamped Inverter Fed AC Motor Drives for Traction Applications                                                                    | 438 |
| Authors' Index                                                                                                                                   | 444 |

# Greedy Approach for Optimizing Image View Layout on Various Sizes of 2D UI Container

Lely Hiryanto

Department of Informatics Engineering

Tarumanagara University

Jakarta, Indonesia

lelyh@fti.untar.ac.id

Andhika Putra Wirawan

Department of Informatics Engineering

Tarumanagara University

Jakarta, Indonesia

andhika.535210010@stu.untar.ac.id

Tony

Department of Informatics Engineering

Tarumanagara University

Jakarta, Indonesia

tony@fti.untar.ac.id

**Abstract**—One important feature of every augmentative and alternative communication (AAC) application is the image view layout (IVL) in a user interface (UI) container, whose size is bound by the device's screen size. The IVL problem deals with arranging a set of images in a two-dimensional UI container with a definitive size. The study seeks to maximize the use of the container space to fit in as many images as possible in such a way that the number of display sets for the overall images is minimum. We consider each image a picture card containing an image or a photograph and a text label with a fixed height but varying width. The IVL problem is a special case of the 2D Bin Packing Problem, which is NP Hard. To provide approximate solutions, we propose two greedy-based heuristic algorithms, which are Order-IVL and Best-Fit-IVL. For the experimental dataset, we use 148 picture cards obtained from an AAC application called VICARA. For 30% of the experimental scenarios, our evaluations show that Order-IVL produces one extra display set than Best-Fit-IVL. Furthermore, Best-Fit-IVL results in the same number of image display sets as the optimal solutions generated by solving the integer linear programming of the IVL problem. In addition, the Best-Fit-IVL consistently produces a tidy and neater arrangement of picture cards than Order-IVL for all experiment scenarios.

**Index Terms**—Image View Layout, Picture Cards, 2D Bin Packing Problem, Integer Linear Programming, Greedy Approach.

## I. INTRODUCTION

Bad experiences due to poor UI layout can cause a distressful feeling for users, and they should be avoided when dealing with cognitively disabled users, such as people with autism spectrum disorder (ASD) [1], [2]. This paper studies a case of UI design for an augmented and alternative communication (AAC) application for users with ASD. In particular, the image collection feature, which is a display of images in an UI container with predefined size.

Each image in AAC is contained in a frame with a fixed width and height. Furthermore, the frame includes a short description of the image called a text label. We call a frame containing an image or a photograph and its text label as a picture card. Fig. 1 shows examples of picture card layout in three different mobile-based AAC applications: (a) AAC Cboard [3], (b) Leeloo [4], and (c) VICARA [5], [6]. Note that any tapping action on each picture card will generate speech according to the text label on the card. In this way, autistic




Fig. 1: Image View Layout in AAC Cboard, Leeloo and VICARA Mobile Applications.

users with speech difficulties can communicate their feelings and needs to other people.

As can be seen in Fig. 1, the space to display the picture

cards is bounded by the device screen. Therefore, the available picture cards cannot be displayed at once. Notice that each card frame has the same size, and the image size will be scaled to fit the frame. In this case, any image with a wider size is going to look smaller than the other images. This inconsistency may distract autistic people because, in general, they can be easily attracted to detail rather than the whole object [7].

In this paper, we propose an optimization problem that optimally arranges picture cards within a container with a given maximum width and height. All images of picture cards are various in width. Therefore, the picture cards are also vary in their width. We consider the width of images is scaled by fixing their height to a given size. Moreover, between every consecutive two picture cards must have a white space or padding, horizontally and vertically. Padding helps users organize visual information better. Furthermore, fixing the height size keeps the tidiness and simplicity of the picture cards display and prevents wider images from becoming smaller.

In accordance with AAC applications, the problem aims to maximize the use of the container space by laying down as many picture cards as possible so that the overall number of picture card sets for display is minimum. Thus, the number of user actions to display the next set of picture cards can also be minimized. Consequently, the search for the required picture cards is more prompt. We call the optimization problem *image view layout* (IVL), which is a special case of a well-known two dimensional bin packing problem, or 2DBPP [8].

2DBPP [8]–[10] is a combinatorial problem that has been proven to be NP-hard. It optimizes the allocation of a given collection of small rectangles (items) to as many large identical rectangles (bins) as possible without having them overlap. The problem considers each item has different width and height.

Various exact methods for 2DBPP have been shown in [9] to solve only up to 100 rectangular items and sometimes unable to obtain solutions for a few as 20 items. On the other hand, approximate methods such as greedy algorithms [11], [12], meta-heuristics [13]–[15], reinforcement learning [16], and deep learning [17] can provide a close-to-optimal solution for a large number of items with significantly faster runtime than the exact techniques.

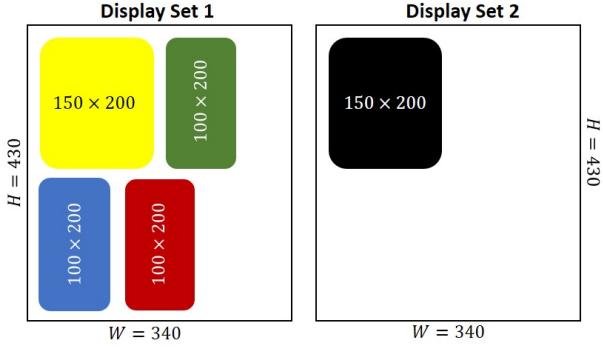
Chen *et al.* [14] addresses an user interface layout problem that maximizes the usage space of a large rectangle UI container by allocating as many as possible a set of small rectangular display components that vary in their width and height. They regard their problem as 2DBPP. To approach the optimal solution, they use the Firefly algorithm. Another study in [17] addresses an optimization of mobile UI layout, which is the arrangement of UI components in a mobile device in such way that it minimize the task completion time and error rate when users interact with the components. They use a deep learning approach called gradient descent to find its near-optimal solution.

The IVL problem is a novel application of the 2D Bin Packing Problem. Chen *et al.* [14] work is the closest related work to ours. Their work deals with the arrangement of UI

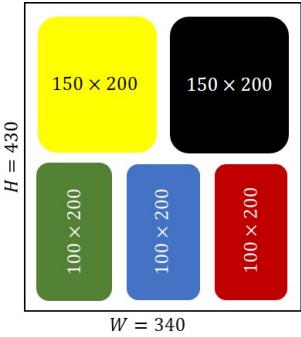
elements with various sizes in an UI container with predefined width and height. On the other hand, the IVL problem arranges a set of images in a frame with a fixed height but its width is adjusted according to the width of its image.

Our main contributions are in three methods to solve the IVL problem. First, we formulate IVL as an integer linear programming and solve it using an optimizer to get its optimal solution as a benchmark for a small number of rectangular items, i.e., picture cards, and UI containers. Second, two greedy-based heuristic algorithms are designed to provide a near-optimal solution for a larger number of the items and containers with a low computational cost.

The remainder of this paper is organized as follows. Section II formulates the IVL optimization problem. We present two heuristic algorithms in Section III and evaluate their performance in Section IV. Section V concludes the paper.


## II. PROBLEM FORMULATION

We follow the six general steps of operations research methodology as described in [18] to perform the optimization study. They are (i) problem description, (ii) parameters and variables definition, (iii) mathematical modeling, (iv) optimal solution, (v) interpretation, and (vi) validation. This section discusses the first three steps, while the last three steps are described in Section IV.


### A. Problem Description

The goal of IVL is to display as many picture cards as possible into a 2D UI container with a fixed width and height in order to minimize the number of such containers. IVL is a special case of 2DBPP, where the item has a fixed height. Furthermore, IVL guarantees that each picture card must be packed into exactly one container, in other words, it has to be displayed only once. Finally, IVL ensures that every card lies inside the UI container.

To illustrate IVL problem, consider (1) an  $340 \times 430$  UI container depicted in Fig. 2, i.e., the container has a width size of 340 and height size of 430 units, e.g., in pixel, (2) five picture cards and their respective sizes of  $150 \times 200$  (yellow),  $100 \times 200$  (green),  $100 \times 200$  (blue),  $100 \times 200$  (red), and  $150 \times 200$  (black), with a padding size of 10 units. Note that each display set is the same size of UI container containing a set of non-overlapping picture cards laying inside the container. Each container has a number of line sections with the same width and height. For example, display set 1 in Fig. 2a consists of two line sections. The first or top line section contains yellow and green picture cards, while the second or bottom line section comprises of blue and red picture cards. Fig. 2a illustrates the non-optimum arrangement of the picture cards according to their order in point (2). The first display, i.e., display set 1, contains only the first four picture cards, which are the yellow, green, blue and red cards. The last picture card, i.e., the black card, is in the second display (display set 2). However, if we optimize the arrangement, as shown in Fig. 2b, all five picture cards can be laid in one display.



(a) Non-optimum Display Set



(b) Optimum, One Display Set

Fig. 2: Image View Layout Illustration.

### B. Parameters and Variables Definition

Let  $n$  rectangular picture cards with the same height are allocated into a limited number of  $m$  bins or display sets. Each bin  $\forall k \in \{1, 2, \dots, m\}$  has the same capacity, which is the same maximum weight  $W$  and height  $H$ . Every rectangular item  $i$  has its own width  $w_i$  and height  $h_i$ , for  $\forall i \in \{1, 2, \dots, n\}$ .

Following Liu *et al.* [10], 2DBPP consists of six decision variables:

- $z_k$  is a binary variable set to 1 if the bin contains at least one item.
- $s_{ik}$  is a binary variable set to 1 if item  $i$  is inside bin  $k$ .
- $l_{ij}$  and  $u_{ij}$  are binary variables set to 1 if item  $i$  is located to the left or under item  $j$ , respectively, for  $i \neq j$ .
- $x_i, y_i$  are positive integer variables including 0, denoted by  $Z_{(i \geq 0)}$ ; they indicate the location of item  $i$ , its bottom and left corner, respectively.

### C. Mathematical Modeling

An Integer Linear Programming in Eq. (1) presents the mathematical model of 2DBPP. Eq. (1a) is the objective of 2DBPP which is a minimum number of used bins. The objective is subject to constraints (1b) to (1o).

Constraint (1b) makes sure that each bin is set as used if it contains items, and constraint (1c) ensure that each item is put into exactly one bin. Constraints (1d) and (1e) guarantee that every item lays inside its bin. Next, constraints (1f) and (1g)

ensure that all rectangular objects do not overlap. According to constraint (1h), this non-overlapping checking applies for the items that are in the same bin. Constraints (1i) and (1j) aid in lessening the symmetry issue, which is all used bins have their index value in order. While the later guarantees that every item is placed in a bin with an index no higher than the item's index, the former guarantees that a bin can only be used if all of the lower index bins are used. For instance, item 1 has to go in bin 1, and item 2 needs to go in either bin 1 or 2. Lastly, the lower bound  $o$ , which is the minimum number of used bins, is applied by constraint (1k). Finally, constraints (1l) to (1o) define the data types of every decision variable.

Constraints (1b), (1i), and (1l) are repeated for each bin  $k$ , where  $\forall k \in \{1, 2, \dots, m\}$ , while constraints (1c), (1d) to (1f), (1j) and (1o) is for each  $\forall i \in \{1, 2, \dots, n\}$ . Next, constraints (1f), (1g), and (1n) apply to two different items  $i \neq j$ , where  $\forall i, j \in \{1, 2, \dots, n\}$ . Similarly, constraint (1h) is for two different items  $i < j$  but it is for each bin  $k$ , where  $\forall i, j \in \{1, 2, \dots, n\}$  and  $\forall k \in \{1, 2, \dots, m\}$ . Finally, constraint (1c) exists for each item  $i$  in each bin  $k$ .

$$\min \sum_{k=1}^m z_k \quad (1a)$$

$$\text{s.t.} \quad \sum_{i=1}^n s_{ik} \leq nz_k, \quad (1b)$$

$$\sum_{k=1}^m s_{ik} = 1, \quad (1c)$$

$$x_i + w_i \leq W, \quad (1d)$$

$$y_i + h_i \leq H, \quad (1e)$$

$$x_i + w_i \leq x_j + W(1 - l_{ij}) \quad i \neq j, \quad (1f)$$

$$y_i + h_i \leq y_j + H(1 - u_{ij}) \quad i \neq j, \quad (1g)$$

$$s_{ik} + s_{jk} - 1 \leq l_{ij} + l_{ji} + u_{ij} + u_{ji} \quad i < j, \quad (1h)$$

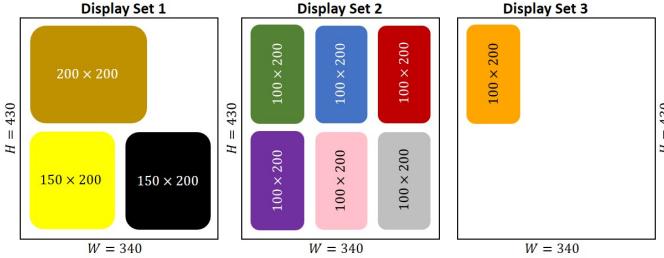
$$z_k \leq z_{k-1} \quad k > 1, \quad (1i)$$

$$\sum_{k=1}^i s_{ik} = 1 \quad i < m, \quad (1j)$$

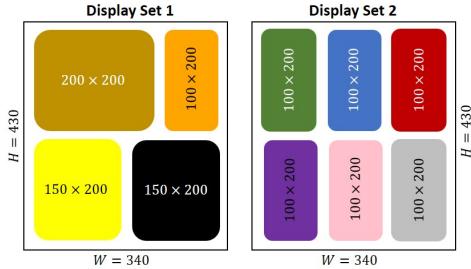
$$\sum_{k=1}^m z_k \geq o, \quad (1k)$$

$$z_k \in \{0, 1\}, \quad (1l)$$

$$s_{ik} \in \{0, 1\}, \quad (1m)$$


$$l_{ij}, u_{ij} \in \{0, 1\} \quad i < j, \quad (1n)$$

$$x_i, y_i \in Z_{(i \geq 0)}. \quad (1o)$$


We solve the ILP and use its optimal solutions as benchmarks to evaluate the performance of the following two proposed greedy algorithms. The performance measurement involves the number of bins, which are the display sets, resulted from both ILP and the two algorithms.

### III. GREEDY-BASED HEURISTIC ALGORITHMS

As stated in [10], [17] and [14], 2DBPP is an NP-Hard problem and its running time to obtain an optimal solution



(a) Solution using descending Order-IVL algorithm



(b) Solution using Best-Fit-IVL algorithm

Fig. 3: Solutions using descending Order-IVL and Best-Fit-IVL algorithms

increases exponentially with larger number of picture cards and the maximum number of display sets. Although IVL fixes the height size of all items, their width is still vary. Therefore, IVL can be categorized as a combinatorial problem. Accordingly, IVL is also an NP-hard problem. Solving a large number of instances using an exact method is time-consuming and does not provide certainty of a sufficiently good convergence to a global optimum [9]. Therefore, we propose two greedy-based heuristic algorithms to provide approximate solutions for larger number of pictures cards and display sets.

#### A. Order-IVL

The first greedy algorithm simply allocates picture cards in ascending or descending order of their width, starting from the top line section of the container. We call the first algorithm as **Order-IVL** with its time complexity of  $\mathcal{O}(n \log n)$ . We assume that an  $\mathcal{O}(n \log n)$  sorting algorithm such as merge sort is used. Therefore, this algorithm's time complexity increases *linearly* with the number of picture cards. Fig. 2b shows a solution generated by Order-IVL by sorting the five picture cards as described in Section II-A in decreasing order.

Let consider adding another five picture cards with the following sizes:  $200 \times 200$  (brown),  $100 \times 200$  (purple),  $100 \times 200$  (pink),  $100 \times 200$  (gray), and  $100 \times 200$  (orange). Fig. 3a shows the results of using descending Order-IVL algorithm. Note that using ascending Order-IVL also produces three display sets. The orange picture card in the third display set can be fit into the first display set so that two display sets should be sufficient.

#### B. Best-Fit-IVL

We propose another greedy algorithm called **Best-Fit-IVL**. It considers the following two cases and takes different actions accordingly when a current picture card has a width larger than the remaining width space for the current line section:

- 1) **case a:** the remaining width space is smaller than an unassigned picture card which has not been assigned to any display set and has the smallest width.
  - action: if it is fit, put the current picture card to the next line section, otherwise put it in the first line section of the next display set.
- 2) **case b:** the remaining width space is equal or larger than a remaining picture card with the smallest width.
  - action: find an unassigned picture card that best fit for the remaining width space, i.e., the card which takes the most remaining space.

In the worst case, Best-Fit-IVL performs action for case *b* for every picture card allocation. Therefore, its overall time complexity can be accounted as a time to sort the picture cards in  $\mathcal{O}(n \log n)$  and find the best-fit picture card among those that have not yet laid in the container in  $\mathcal{O}(n^2)$ . Therefore, the total time complexity for Best-Fit-IVL is  $\mathcal{O}(n \log n + n^2) = \mathcal{O}(n^2)$ . Fig. 3b shows the results of using Best-Fit-IVL. As shown in the figure, 10 picture cards can now be arranged into only two display sets. The time complexity of Best-Fit-IVL increases quadratically with the number of picture cards. With this type of time complexity, the algorithm will be impractical for a very large number of picture cards.

## IV. RESULTS AND DISCUSSION

We have implemented Order-IVL and Best-Fit-IVL in Python and used Gurobi for Python [19] to solve ILP in Eq. (1). Furthermore, a simple website using Django framework is developed to provide a visualization of IVL solution from the two greedy algorithms and ILP. All of our experiments are conducted on a 64-bit Windows machine with an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz and 16 GB of memory.

We use up to 148 picture cards of VICARA application [20] to evaluate the two greedy algorithms against the optimal (benchmark) solution obtained by solving ILP (1). Each picture card has a fixed height of 145 pixels and a white space for each side of the card set to 23 pixels. Furthermore, we use device mode in Chrome browser to simulate different sizes of the UI container in four mobile devices, iPhone 12 Pro, Pixel 7, iPad Mini and Samsung Galaxy A51/71. Note that the size of the container is made less than the device screen resolution.

Fig. 4 shows a sample of IVL solution produced by the three methods in iPhone 12 Pro. The three solutions are visualized as a Django website. Among the three solutions, Order-IVL generates three displays sets, while the other two methods require only two sets for 13 picture cards. Notice that Best-Fit-IVL provides better arrangement, i.e., tidier and neater, than the other two methods. It is reasonable because Best-Fit-IVL

TABLE I: Experimental results of running Order-IVL, Best-Fit-IVL and ILP

| Number of Picture Cards | Methods             | Number of Display Sets in Four Mobile Devices |                     |                       |                                   |
|-------------------------|---------------------|-----------------------------------------------|---------------------|-----------------------|-----------------------------------|
|                         |                     | iPhone 12 Pro (370 × 645)                     | Pixel 7 (410 × 716) | iPad Mini (748 × 825) | Samsung Galaxy A51/71 (392 × 715) |
| 13                      | <b>Order-IVL</b>    | 3                                             | 2                   | 1                     | 2                                 |
|                         | <b>Best-Fit-IVL</b> | 2                                             | 2                   | 1                     | 2                                 |
|                         | <b>ILP</b>          | 2                                             | 2                   | 1                     | 2                                 |
| 30                      | <b>Order-IVL</b>    | 5                                             | 4                   | 2                     | 4                                 |
|                         | <b>Best-Fit-IVL</b> | 4                                             | 4                   | 2                     | 4                                 |
|                         | <b>ILP</b>          | -                                             | -                   | -                     | -                                 |
| 148                     | <b>Order-IVL</b>    | 9                                             | 7                   | 4                     | 8                                 |
|                         | <b>Best-Fit-IVL</b> | 9                                             | 7                   | 3                     | 7                                 |
|                         | <b>ILP</b>          | -                                             | -                   | -                     | -                                 |

tries to use the container space as much as possible and at earlier display sets as possible.

The number of display sets is mainly used to measure the performance measurement of Order-IVL, Best-Fit-IVL, and ILP. Table I shows the number of display sets resulted from Order-IVL, Best-Fit-IVL and ILP in four different mobile devices. We define three scenarios based on the amount of picture cards, which are 13, 30 and 148 cards. After running ILP for one day, we fail to get the optimal solutions in any of the four mobile devices for the larger number of picture cards, i.e., 30 and 148 cards. We exclude the running time of the three methods from Table I because from their time complexity described in Section III, Order-IVL and ILP have respectively the fastest and the slowest runtime than their counterparts. These trends consistently apply to all scenarios. As an example, Order-IVL, Best-Fit-IVL and ILP produce two display sets for 13 picture cards in 1.39, 2.01 and 146.96 seconds, respectively, in Samsung Galaxy A51/71.

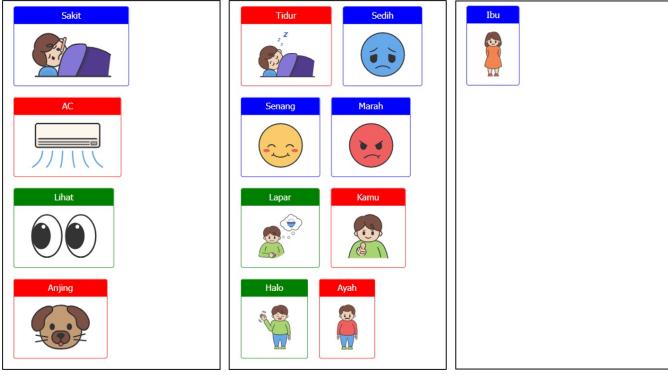
As shown in Table I, ILP and Best-Fit-IVL arrange the first 13 picture cards in only 2 display sets for iPhone 12 Pro, while Order-IVL needs one extra display set. However, for the other three devices, all methods lay the 13 cards into the same number of display sets. For the larger number of picture cards, Order-IVL needs one more display set to lay 30 cards in iPhone 12 Pro and 148 cards in iPad Mini and Samsung Galaxy A51/71 than Best-Fit-IVL.

Overall, Best-Fit-IVL outperforms Order-IVL in minimizing the number of display sets in order to maximize the use of container space at the earlier display sets. Further, our research findings find that consistently, Best-Fit-IVL provides a better, i.e., a tidy and neater, arrangement of the picture cards in each display set for all card sets in all four devices. Moreover, our experimental results show that the runtime of Order-IVL is only slightly faster than Best-Fit-IVL. Notice also that Best-Fit-IVL and ILP always produce the same optimal number of display sets for the 13 picture cards. Here, we can conclude that Best-Fit-IVL is the best alternative solution for IVL when getting the optimal solution from ILP is not feasible due to its time-consuming solver.

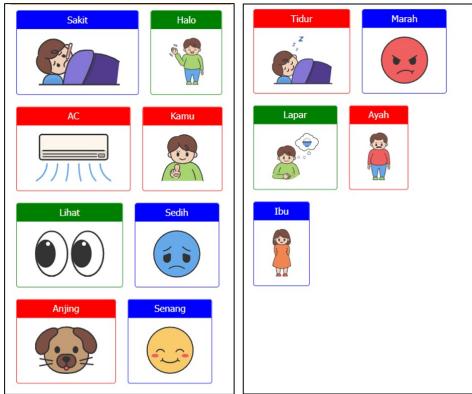
## V. CONCLUSION

This paper introduces the optimization problem of image view layout (IVL) focusing on placing a collection of images in a given number of 2D user interface (UI) containers with the same size. Here, we view each image as a picture card with a text label and an image or photograph on it. Furthermore, a container for our case is called a display set containing a set of non-overlapping images that can be laid within one container. In order to put a maximum number of picture cards into one container while using the fewest available containers, the study aims to maximize container space. We regard IVL as a special case of 2DBPP, where the items are picture cards with the same height.

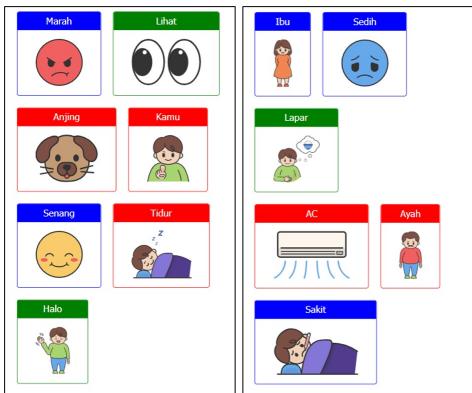
In order to model IVL problem, the study uses integer linear programming (ILP). Since IVL is an NP-hard problem, we design two greedy-based heuristic algorithms, Order-IVL and Best-Fit-IVL, to generate close-to-optimal solutions. Based on the research results, it appears that Best-Fit-IVL consistently arranges picture cards neatly in minimum number of display sets than Order-IVL. Moreover, Best-Fit-IVL can produce the same minimum number of display sets as ILP for a small number of photo cards.


For future work, we plan to (1) use more picture cards, (2) approach the near-optimal solution using meta-heuristic methods such as swarm optimization algorithms and machine learning such as Gradient Descent, and (3) consider other factors influencing IVL, particularly in relation to AAC application for users with ASD and speech difficulty.

## ACKNOWLEDGMENT


The authors would like to thank Oxana Agatha Guijaya, S.Sn and Ruby Chrissandy, S.Sn., M.Ds for their picture cards design used as the experimental dataset in this paper.

## REFERENCES


- [1] M. Rezae, N. Chen, D. McMeekin, T. Tan, A. Krishna, and H. Lee, “The evaluation of a mobile user interface for people on the autism spectrum: An eye movement study,” *International Journal of Human-Computer Studies*, vol. 142, p. 102462, 2020.
- [2] M. Alzahrani, A. L. Uitdenbogerd, and M. Spichkova, “Human-computer interaction: Influences on autistic users,” *Procedia Computer Science*, vol. 192, pp. 4691–4700, 2021.



(a) Descending Order-IVL



(b) Best-Fit-IVL



(c) ILP

Fig. 4: Solution samples using descending Order-IVL, Best-Fit-IVL and ILP

<https://www.autism.org.uk/advice-and-guidance/topics/sensory-differences/sensory-differences/all-audiences>, [Accessed 30-08-2024].

- [8] A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems,” *INFORMS journal on computing*, vol. 11, no. 4, pp. 345–357, 1999.
- [9] S. Polyakovskiy and R. M’Hallah, “Just-in-time two-dimensional bin packing,” *Omega*, vol. 102, p. 102311, 2021.
- [10] C. Liu, K. Smith-Miles, T. Wauters, and A. M. Costa, “Instance space analysis for 2d bin packing mathematical models,” *European Journal of Operational Research*, vol. 315, no. 2, pp. 484–498, 2024.
- [11] A. M. Chwatal and S. Pirkwieser, “Solving the two-dimensional bin-packing problem with variable bin sizes by greedy randomized adaptive search procedures and variable neighborhood search,” in *International Conference on Computer Aided Systems Theory*. Springer, 2011, pp. 456–463.
- [12] H. Zhang, Q. Liu, L. Wei, J. Zeng, J. Leng, and D. Yan, “An iteratively doubling local search for the two-dimensional irregular bin packing problem with limited rotations,” *Computers & Operations Research*, vol. 137, p. 105550, 2022.
- [13] S. Kosari, M. Hosseini Shirvani, N. Khaledian, and D. Javaheri, “A hybrid discrete grey wolf optimization algorithm imbalance-ness aware for solving two-dimensional bin-packing problems,” *Journal of Grid Computing*, vol. 22, no. 2, pp. 1–36, 2024.
- [14] W. Chen, H. Yu, X. Li, L. Qu, and Z. Mi, “Layout design with a firefly algorithm for user interfaces in vehicle system,” in *2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)*. IEEE, 2020, pp. 110–113.
- [15] X. Zhang, M. Shan, and J. Zeng, “Parallel batch processing machine scheduling under two-dimensional bin-packing constraints,” *IEEE Transactions on Reliability*, vol. 72, no. 3, pp. 1265–1275, 2022.
- [16] K. Zhu, N. Ji, and X. D. Li, “Hybrid heuristic algorithm based on improved rules & reinforcement learning for 2d strip packing problem,” *IEEE Access*, vol. 8, pp. 226 784–226 796, 2020.
- [17] P. Duan, C. Wierzyński, and L. Nachman, “Optimizing user interface layouts via gradient descent,” in *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, 2020, pp. 1–12.
- [18] Z. Fan, B. Ghaddar, X. Wang, L. Xing, Y. Zhang, and Z. Zhou, “Artificial intelligence for operations research: Revolutionizing the operations research process,” *arXiv preprint arXiv:2401.03244*, 2024.
- [19] “Python API Overview - Gurobi Optimization — gurobi.com,” [https://www.gurobi.com/documentation/current/refman/py\\_python\\_api\\_overview.html](https://www.gurobi.com/documentation/current/refman/py_python_api_overview.html), [Accessed 09-08-2024].
- [20] “Vicara - Aplikasi di Google Play — play.google.com,” <https://play.google.com/store/apps/details?id=com.bithouse.vicara&hl=id>, [Accessed 09-08-2024].

- [3] luxi, “Cboard AAC - Communication for Everyone — cboard.io,” <https://www.cboard.io/en/>, [Accessed 06-08-2024].
- [4] “Leeloo AAC - Assistive Cards — assistivecards.com,” <https://assistivecards.com/leeloo/>, [Accessed 06-08-2024].
- [5] H. Hersinta, C. Bangun, and O. Hutagaol, “Developing vicara 2.0: Exploring the potential use of augmentative and alternative communication (aac) apps for the parents and teachers of autistic students,” in *AIP Conference Proceedings*, vol. 2680, no. 1. AIP Publishing, 2023.
- [6] “Vicara 2 - Apps on Google Play — play.google.com,” <https://play.google.com/store/apps/details?id=com.vicara.vicara2>, [Accessed 30-08-2024].
- [7] “Sensory differences - a guide for all audiences — autism.org.uk,” <https://www.autism.org.uk/advice-and-guidance/topics/sensory-differences/sensory-differences/all-audiences>, [Accessed 30-08-2024].