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Abstract: The manufacturing of materials, in conjunction with green technology, emphasises the 

need to employ renewable resources to ensure long-term sustainability. Re-exploring renewable 

elements that can be employed as reinforcing materials in polymer composites has been a major 

endeavour. The research goal is to determine how well palm kernel cake filler (PKCF) performs in 

reinforced epoxy composites. In this study, PKCF with 100 mesh was mixed with epoxy resin (ER) 

in various ratios ranging from 10% to 40% by weight. Hand lay-up with an open mould is proposed 

as a method for fabricating the specimen test. Surface modification of PKCF with varying concen-

trations of NaOH (5 wt.% and 10 wt.%) will be contrasted with the untreated samples. Using Fourier 

transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scan-

ning calorimetry (DSC), the effect of alkaline treatment will be examined. The tensile and maximum 

flexural strength of the untreated PKCF/ER composite were determined in this work, with a 30 wt.% 

of PKCF having the highest tensile strength of 31.20 MPa and the highest flexural strength of 39.70 

MPa. The tensile and flexural strength were reduced to 22.90 MPa and 30.50 MPa, respectively, 

when the filler loading was raised to 40 wt.%. A 5 wt.% alkali treatment for 1 h improved the com-

posites’ mechanical characteristics. Lastly, an alkali treatment can aid in the resolution of the prob-

lem of inadequate matrix and filler interaction. Alkaline treatment is a popular and effective method 

for reducing the hydroxyl group in fillers and, thus, improving interfacial bonding. Overall, palm 

kernel cake is a promising material used as a filler in polymer composites. 

Keywords: palm kernel cake; epoxy; filler; composites; surface modification 

 

1. Introduction 

Due to the poor biodegradability of synthetic fibre and the increasing environmental 

concern, researchers have been looking at natural fibre as a substitute for synthetic fibre 

in reinforced polymer composites, for developing ecologically acceptable home and in-

dustrial components, during the past few years [1]. Natural fibres, such as those obtained 
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from agricultural wastes, are attracting interest in the polymer composite industry be-

cause of their many advantages, including being low cost and lightweight [2]. The utilisa-

tion of natural resources provides economic and environmental benefits obtained through 

waste recovery [3–7]. However, there are also drawbacks to using natural fibre in compo-

sites. The main issue observed, linked to the natural fibre-based polymer composite, is the 

counter characteristic of the polymer matrix and natural fibre, where the polymer matrix 

is a hydrophobic material. In contrast, natural fibre is a hydrophilic material [8]. This dif-

ferent characteristic makes the materials incompatible with each other. The incompatibil-

ity between the fibre and matrix composite produces a weak adhesion between them. 

Hence, it leads to the deterioration in the mechanical performance of the composite. Ac-

cording to past studies, there are numerous approaches for improving the composite’s 

mechanical performance, such as the inclusion of fibre treatment [9]. 

Consequently, to identify the solutions to this issue, researchers need to investigate 

the factors that influence the mechanical performance of the composite. per prior research, 

various aspects such as filler treatment, filler-loading composition, and polymer type have 

a significant impact on the composite’s mechanical performance [1,10,11]. As a result, 

given the previous investigation, this paper explores in-depth the potential composite el-

ements that influence composite mechanical performance. 

The composites’ tensile modulus and tensile strength are primarily determined by 

filler amount and size, filler properties, matrix interfacial bonding, void formation, mois-

ture absorption by filler, and other factors, according to Arjmandi et al. (2015) [12]. Ac-

cording to Patel and Jain (2020), the decrease in tensile strength is because of the weak 

stress transfer between the filler material and matrix resin [13]. The majority of the previ-

ous authors looked at the influence of physical and chemical treatment, which is among 

the most well-known surface-modification approaches that help to promote matrix and 

fibre adhesion. This statement has been proven by several previous scholars, such as 

Olaitan et al. (2017), who fabricated epoxy-based composite incorporation of rice husk 

using treated fibre with 10% NaOH solution for 30 min [14]. To mention a few, Bisht and 

Gope (2018) developed a rice-husk flour/epoxy bio-composite and characterised the me-

chanical properties as well as the effect of alkali treatment on the composite [15]. In con-

trast, Emdadi et al. (2015) studied the impacts of chemical treatment on a rice-husk-rein-

forced composite [16]. The composite containing treated rice husk improved the adhesive 

qualities of composites, according to the researchers. Yeh et al., (2015) used a mixture of 

NaOH and maleic anhydride to treat a rice-husk-reinforced polypropylene composite. In 

conclusion, reinforcing material is a diffuse phase that usually consists of fibrous materi-

als, including glass fibre and organic/natural fibre [17]. 

Oushabi et al. (2017) studied the alkaline-concentration impact in their investigation. 

They noted that 5% NaOH-treated date palm fibres resulted in an optimum tensile 

strength, which was 76% higher than raw fibres, and a 10% NaOH treatment resulted in 

a reduction in strength due to the surface damage of the fibres [18]. Gopinath et al. (2014) 

also concluded the same phenomenon for a jute-fibre-reinforced composite with a poly-

ester matrix, where a 5% NaOH treatment of the fibres provided better mechanical prop-

erties compared to a 10% NaOH treatment [19]. The sisal–oil palm hybrid’s fibre mechan-

ical properties, reinforced natural rubber composites with the effect of alkaline treatment, 

were investigated by John et al. (2008). It has been demonstrated that a 4% NaOH treat-

ment produces a robust interface that improves fibre and rubber adhesion [20]. Lopat-

tananon et al. (2006) observed the influence of surface treatment on the performance of a 

pineapple leaf fibre–natural rubber composite. The research work was done with various 

concentrations (1%, 3%, 5%, and 7%) of NaOH solution for the fibre treatment, and the 

treatment was done for 18 h with continuous stirring at room temperature. Among four 

concentrations, a 5% NaOH treatment maximised the composite tensile strength [21]. 

Ray et al. (2001) investigated the jute fibre composite’s flexural properties with dif-

ferent fibre loading (0, 8, 15, 23, 30, and 35 wt.%) and alkaline-treatment duration (0, 2, 4, 

6, and 8 h). The composite properties showed optimum results with 4 h of treatment and 
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35 wt.% of fibre loading. The modulus has risen by 23% and the flexural strength by 20%, 

for 4 h of treatment [22]. Alkaline treatment, on the other hand, does not completely en-

hance the fibre or composite mechanical properties. For instance, Lopattananon et al. 

(2006) showed that the composite’s tensile strength was initially decreased for 1% and 3% 

NaOH fibre treatment [21]. Another instance is the effect of alkaline treatment on the me-

chanical characteristics of unsaturated polyester composites/sugar palm yarn with vari-

ous fibre loadings, as reported by Norizan et al. (2018). A 1% NaOH solution was used for 

the alkaline treatment, which lasted 1 h. As a consequence, for both treated and untreated 

fibre, the flexural and tensile strength were optimum at 30 wt.% fibre loading [23]. How-

ever, among all the readings, the composite with treated fibre showed lower than the un-

treated fibre-reinforced composite. There are some parameters and conditions, such as 

treatment concentrations, duration, and suitability for the fibres or matrix [15,24,25]. 

Therefore, the right parameters of treatment for each type of fibre only can achieve im-

provements. 

The objective of this study is to determine how filler loading and treatment affect the 

performance of palm kernel cake filler (PKCF) as a suitable reinforcing agent in epoxy 

composites. 

2. Methodology 

2.1. Materials 

The raw materials utilised in this research included palm kernel cake, sodium hy-

droxide or NaOH (C1143—HmbG), and epoxy resin (ER) Epikote 828 with epoxy hard-

ener (651) product from Hexion, United States, which was purchased from the IZE solu-

tion company in Kuala Lumpur, Malaysia. The technical datasheet of epoxy resin as 

shown in Table 1. The Malaysian Palm Oil Board (MPOB) in Bangi, Selangor, Malaysia, 

provided the palm kernel cake. The density of palm kernel cake is 1.05 g/cm3. To remove 

residual oil, PKC was immersed and washed with distilled water before being air dried 

for 48 h. The palm kernel cake was then ground and sieved through a 100-mesh sieve. 

PKCF was dried in a vacuum oven at 105 °C for 24 h before being mixed with epoxy resin 

(Figure 1). 

Table 1. Technical datasheet of epoxy resin (Epikote 828). 

Property Value Unit 

Colour 100 max Pt-Co 

Epoxy group content 5260–5420 mmol/kg 

Viscosity at 25 °C 12–14 Pa.s (Poise) 

Density 1.16 Kg/L 

 

Figure 1. Palm kernel cake filler with size of 100 mesh. 

The methodology in this study was included; surface modification with alkaline 

treatment, mixing and fabrication of specimen tests, curing process, and mechanical test 
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and analysis of fractured tensile specimen using Softop microscope. Figure 2 depicts the 

research methodology. 

 

Figure 2. Research frameworks. 

2.2. Fabrication of Specimen Test 

Different concentration of filler loadings was prepared: 0%, 10%, 20%, 30%, and 40% 

(by weight) by mixing the UPKCF with ER. For each batch, the total weight of the mixture 

is maintained at 300 g. The weight of the filler, hardener, and epoxy is tabulated in Table 

2. The hardener was slowly poured into the epoxy resin, and both were mixed in a con-

tainer in a 3:1 ratio. A wooden stick was used to stir the matrix mixture slowly and uni-

formly. It was intended to prevent the formation of bubbles, but a few small bubbles re-

mained inside. After 5 min, the filler was added in two to three turns to the matrix mix-

ture. Thus, the composite mixture was constantly stirred for 5 min. Next, the composite 

mixture was put in a vacuum oven for 5 min at room temperature (25 °C) to eliminate air 

bubbles before pouring into the mould. Finally, the composite mixture was poured into 

the mould using the self-made funnel. The funnel is made of one-third of an A4 sheet of 

PVC paper, formed into a cone shape, ensuring that the mixture is evenly distributed in 

the mould. The composite was eventually cured for at least 24 h at room temperature. The 

specimens are characterised using the labels as shown in the last column. 

Table 2. Composition of untreated PKCF/ER composites. 

Filler Loading 

(%) 
Filler Weight (g) Epoxy Weight (g) Hardener Weight (g) Label 

10 30 202.5 67.5 UPKCF10 

20 60 180 60 UPKCF20 

30 90 157.5 52.5 UPKCF30 

40 120 135 45 UPKCF40 

2.3. Surface Modification with Alkaline Treatment 

Table 3 shows the formulation parameter of surface modification of PKCF with alka-

line treatment. Based on previous research findings [14,18], the 30 wt.% of untreated palm 

kernel cake filler (UPKCF) were treated for 1 h and 24 h with 5% and 10% NaOH solutions, 

respectively, to remove dirt and impurities from the filler surface. The alkali treatment 

transforms the filler surface into a rough surface, thereby enhancing the adhesion between 

the epoxy and filler surface [26]. The alkali treated fillers were rinsed with distilled water 

to neutralise the NaOH solution deposited on the filler surface, and then dried for 48 h at 

temperature 80 °C [27]. 



Polymers 2022, 14, 3063 5 of 17 
 

 

Table 3. Surface modification with alkaline treatment of PKCF/ER composites. 

NaOH 

Concentration 

Duration Time 

(h) 
Label 

0% (untreated) 0 UPKFC30 

5% 
1 TPKCF501 

24 TPKCF524 

10% 
1 TPKCF1001 

24 TPKCF1024 

2.4. Mechanical Testing 

Figure 3 illustrates specimens for tensile, flexural, and impact testing conducted on 

treated and untreated PKCF/ER composites. Tensile properties, for instance, tensile mod-

ulus and tensile strength, are evaluated using PKCF/ER composite specimens in accord-

ance with the American Society for Testing and Materials (ASTM D 638–04). An INSTRON 

3369 universal testing machine is utilised to test a crosshead speed of 2 mm/min, and the 

average value is recorded. The modulus and flexural strength are evaluated using a three-

point bending test on an INSTRON 3369 universal testing machine, which follows com-

parable tensile test techniques. Likewise, an Izod impact test composite measuring 127 

mm × 12.7 mm × 3 mm was created in accordance with ASTM D256. The PKCF/ER com-

posites’ mechanical properties will be studied between treated and untreated samples. 

  

 

Figure 3. Specimens for tensile, flexural, and impact testing. 

2.5. Microscopic Analysis 

The tensile fractured specimens of untreated palm kernel cake filler (UPKCF) and 

treated palm kernel cake filler (TPKCF) of composite will be analysed under Meiji techno 

microscope. 

2.6. Characterisation of PKFC/Epoxy Composite 

The Nicolet iS50 Fourier transform infrared (FTIR) spectroscopy instrument from 

Thermo Fischer was utilised to analyse the potential chemical bonds present in both un-

treated and treated PKFF/ER composite samples. Based on the literature studies, the IR 

spectrometer is maintained between 4000 and 4000 cm−1 [28,29]. The thermogravimetric 

analyser of STA7200—Hitachi was used to study the thermal stability of untreated and 
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treated filler composite. A powdered sample of 10 mg was put in an alumina crucible and 

kept in the furnace. The analysis was completed in a controlled environment where 20 

mL/min of nitrogen gas was flowing. The rate of change of temperature was kept at 10 

°C/min. The experiment was done from 30 °C to 800 °C. Differential scanning calorimetric 

(DSC) analysis for PKFC composites was performed using a Perkin Elmer DSC 8000. The 

nitrogen flow rate was 20 mL/min, and the heating rate was 10 °C/min for the test, which 

was carried out up to 350 °C above room temperature. 

3. Results and Discussion 

3.1. Tensile Properties 

Figure 4 shows the untreated PKCF/ER composites’ tensile strength (TS) and tensile 

modulus (TM) at different filler loadings. The figure shows that increasing the amount of 

untreated palm kernel cake filler (UPKCF) from 10% to 30% raises the TM and TS from 

0.95 GPa to 1.96 GPa and 25.40 MPa to 31.20 MPa, respectively. The rise in TM and TS 

reflects the findings study by Nagaraj et al. (2020). The researchers look into using date 

seed filler, in amounts varying from 5% to 50%, to reinforce vinyl ester composites. The 

results suggest that a 30% date seed filler concentration achieves the maximum tensile 

strength of 40.30 MPa [30]. This is due to the fact that the matrix’s tensile load distributed 

the created stress inside the filler. Therefore, the filler reinforcement carried the tensile 

load, limiting matrix fracture. Thus, it is more rigid and strong. With the increase in 

UPKCF to 40%, the tensile strength and tensile modulus dropped to 22.90 MPa and 1.36 

GPa, respectively. At higher filler concentrations, this is attributable to poor bonding be-

tween the epoxy resin (ER) matrix and the filler. During tensile testing, it resulted in cav-

ities and reduced strength [31]. 
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Figure 4. Tensile strength and tensile modulus of UPKCF/ER composites. 

A Meiji Techno microscope was used to examine the surface tensile fractured of 

UPKCF/ER composites. Figure 5 depicts the surface morphology of ER containing 10%, 

20%, 30%, and 40% UPKCF. Filler agglomeration was clearly visible at the fracture surface 

when loading 10%, 20%, 30%, and 40% fillers (Figure 5a–d). Increased filler-loading con-

centrations of up to 40% resulted in more agglomeration and voids in the surface of the 

composites. A similar result was stated by Khoshnoud et al. (2017). The reinforcements 

have a stronger tendency to agglomerate due to their high aspect ratio and low surface 

energy [32]. According to Kumar et al. (2018), the filler molecules agglomeration around 

the matrix, which precludes proper curing of the composites and results in a reduction in 

the flexural and tensile behaviour of the composites at a higher percentage of filler [33]. 

The ER’s low wetting capacity to the 40 wt.% filler in the composite in this study resulted 



Polymers 2022, 14, 3063 7 of 17 
 

 

in poor interfacial bonding between the filler reinforcement and the polymer epoxy matrix 

[34]. Figure 5c shows the surface morphology at 30 wt.% filler loading of UPKCF/ER com-

posite, which showed good dispersion, less agglomeration, and fewer voids. This demon-

strates that the quality of the filler–matrix mixture plays a crucial role in achieving excel-

lent composite material properties [35]. Microscopic observation can illustrate the process 

of the filler concentration impact on UPKCF/ER composites mechanical properties, it can 

be concluded. 

 

Figure 5. Microscopic of a tensile fractured UPKCF composites; (a) 10, (b) 20, (c) 30, and (d) 40 

wt.%. 

Table 4 summarises previous research findings on the tensile properties of specific 

filler-reinforced epoxy composites. Natural fillers have been employed as reinforcement 

agents for epoxy composites in a variety of ways, as shown in Table 4. The maximum 

tensile strength achieved in previous studies ranged from 15 MPa to 47.65 MPa, with the 

various loadings, sizes, and types of the filler [33,36–40]. In comparison, the findings of 

this study fall within the range (31.20 MPa) at 30 wt.% filler loading of UPKCF/ER. Ac-

cording to the comparison study, the tensile properties of the composite are affected by 

the filler type, filler size, and filler loading [41]. The filler materials’ distribution in the 

matrix has a major influence on composite performance [42]. 

Table 4. Reported previous studies on tensile properties of various filler-reinforced epoxy compo-

sites. 

Filler Type Filler Size 

Optimum Filler 

Loading 

(wt.%) 

Remarks Ref. 

Banana 30 mm 20 

Increased 

37.31% com-

pared to neat 

epoxy resin 

[43] 

Lagenaria Siceraria 7 mm 30 23.07 MPa [36] 

Rice husk 125 microns - 

Decreased 

compared to 

neat epoxy 

resin 

[44] 



Polymers 2022, 14, 3063 8 of 17 
 

 

Coconut shell 200–800 μm 20 30.60 MPa [37] 

Tea dust - 50 15 MPa [38] 

Date palm 0.8–1 mm 50 25.76 MPa [39] 

Lantana camara - 20 26.31 MPa [40] 

Wood dust 2 μm 10 47.65 MPa [33] 

Palm kernel cake filler 100 mesh 30 31.20 MPa 
Current 

study 

3.2. Flexural Properties 

Figure 6 depicts the influence of filler loading on the flexural strength (FS) and flex-

ural modulus (FM) of UPKCF-reinforced ER. Based on the findings, when the filler weight 

concentration increases, the maximum FS and FM values increase and reach a peak at 30% 

filler weight, before decreasing and reaching a minimum at 40% filler weight. With 40% 

filler loading, the UPKCF/ER composites decreased by 39% and 23% in FS and FM, re-

spectively. This could be due to the increasing deterioration of interfacial bonding be-

tween the epoxy matrix polymer (hydrophobic) and UPKCF (hydrophilic). Depending on 

the adhesion of the fillers to the matrices, the introduction of fillers improved the flexural 

strength and flexural modulus [36]. The stiffness and interfacial area of contact of the com-

posites were increased by adding fillers ranging from 10% to 30%, improving the flexural 

properties [45]. 
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Figure 6. Flexural strength and flexural modulus of UPKCF/ER composites. 

Table 5 gathers comparable results on the effect of filler concentration and size on the 

composites’ flexural properties from past research. From the table, the size of the fillers 

used to reinforce the polymer epoxy resin ranges from 2 μm to 30 mm. The optimal weight 

concentration of the filler used in the composite ranges from 10% to 50%. Several param-

eters, for instance, the filler size, the filler type, the filler concentration, and the interfacial 

adhesion between the fillers and the matrix, are thought to influence the composites’ flex-

ural capabilities [33,36–38,40,43,44]. The highest flexural-strength value in this investiga-

tion is almost identical to that found in earlier experiments, ranging from 41 MPa to 53.4 

MPa. 
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Table 5. Reported previous studies on flexural properties of various filler-reinforced epoxy compo-

sites. 

Filler Type Filler Size 

Optimum Filler 

Loading 

(wt.%) 

Remarks Ref. 

Banana 30 mm 20 Increased 10.13% [43] 

Lagenaria 

Siceraria 
7 mm 30 48.40 MPa [36] 

Rice husk 125 microns - 
Decrease compared 

to neat epoxy resin 
[44] 

Tea dust - 50 41 MPa [38] 

Lantana camara - 20 53.4 MPa [40] 

Wood dust 2 microns 10 47.65 MPa [33] 

Palm kernel 

cake filler 
100 mesh 30 39.70 MPa Current study 

3.3. Izod Impact Properties 

The Izod impact strength of PKCF/ER composites is shown in Figure 7. The tensile 

and flexural strength showed a similar pattern in this graph. At 30% filler loading, the 

composites’ maximal impact strength (66.48 J/m) is reached. As the filler loading rises, the 

impact strength starts increasing. The impact strength was reduced to 54.81 J/m at higher 

filler loading, resulting in the lowest impact strength compared to other concentration 

filler loadings. This could be because of the poor interfacial connection that exists between 

the filler and the matrix, in addition to the voids and agglomeration of the fillers that occur 

when there is a higher percentage of filler. It was also reported by Raju et al. [46] and Rizal 

et al. [47] that the impact strength of the composite specimens decreased with increasing 

filler loading. This behaviour of the composite specimens was observed to be similar. 

 

Figure 7. Izod impact strength of UPKCF/ER composites. 

Table 6 shows the results of past research on the Izod impact of various filler-rein-

forced epoxy composites. The types of filler and concentrations stated in the table have 

significantly improved the flexural and tensile properties of the composites described in 

the earlier portion, as shown in the table. The current study found that palm kernel cake 

filler (PKCF) at a concentration of 30% filler loading achieved the best mechanical prop-

erties, for instance, the flexural, tensile, and impact strength. 
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Table 6. Reported previous studies on Izod impact of filler-reinforced epoxy composites. 

Filler Type Filler Size 

Optimum Filler 

Loading 

(wt.%) 

Remarks Ref. 

Banana 30 mm 20 Increased 80.99% [43] 

Lagenaria Siceraria 7 mm 30 0.75 J [36] 

Rice husk 125 microns - 

Decreased com-

pared to neat 

epoxy resin 

[44] 

Tea dust - 40 625 (J/m2) [38] 

Lantana camara - 20 5.3 (J/cm2) [40] 

Hybrid pine nee-

dle fibre/pistachio 

shell filler 

- 20 + 10 23.33 KJ/m2 [48] 

Palm kernel 

cake filler 
100 mesh 30 66.48 J/m Current study 

3.4. Effect of Alkaline Treatment 

Figure 8 illustrates the alkaline-solution concentration influence on the tensile prop-

erties of PKCF/ER composites. The figure shows that for 30% filler loading (TPKCF501) 

treated with 5% NaOH solution in 1 h, both the tensile modulus and tensile strength 

greatly improved when contrasted with the untreated filler (UPKCF30). Treated filler with 

alkaline has improved the composites’ TS and TM by 23% and 15%, respectively. Com-

pared with the soaking duration of 24 h, there are 7% and 7.7% improvements in TS and 

TM, respectively. When the fillers were soaked in sodium hydroxide solution with 10% 

NaOH concentration (TPKCF1001), the TS and TM worsened compared to the tensile 

properties of the untreated specimens. There was a 13.10% and 8.20% reduction in TS and 

TM, respectively. When the soaking time was extended to 24 h (TPKC1024), there were 

2.60% and 6% reductions in TS and TM, respectively, compared to 1 h of soaking time. 

 

Figure 8. Effect of alkali treatment on PKCF/ER composites. 

The results obtained from this study are along the lines of the earlier literature [49], 

which found the tensile properties are strongly influenced by the concentration of the al-

kaline. The interfacial bonding is enhanced by the build-up of a more effective area for 

mechanical interlocking between fibre and matrix due to fibrillation at a 5% NaOH solu-

tion concentration. (Figure 9a,b). However, at 10% alkaline concentration with treatment 
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duration of 1 h and 24 h (Figure 9c,d), the fibres are damaged and become brittle because 

of the high concentration of the alkali that is unsuitable for the treatment, as reported by 

Mahjoub et al. (2014) [50]. In addition, alkali treatment is used to change the surface of the 

filler from hydrophilic to hydrophobic by removing the components present on the sur-

face. Finally, this approach is ideal for increasing the interfacial adhesion between the ma-

trix and the fillers. 

 

Figure 9. Microscopic of tensile-fractured TPKCF composites; (a) TPKCF501, (b) TPKCF524, (c) 

TPKCF1001, (d) TPKCF1024. 

Table 7 summarises the similar findings from previous studies on the surface modi-

fication of natural fibre and filler using a sodium hydroxide solution. Table 6 shows that 

the range of alkaline treatment for natural filler is from 1% to 15%. The duration of the 

soak ranges from 1 to 24 h. The filler’s immersion time, for the best results, is recom-

mended between 1 and 4 h. It has been revealed that treating various types of fibre and 

fillers with a 5% NaOH solution enhanced the composites’ tensile properties. 

Table 7. Reported previous studies on alkali treatment of filler-reinforced epoxy composites. 

Filler Type 
Concentration of 

NaOH (%) 

Duration 

(h) 

Result 

(Optimum) 
Ref. 

Carnauba 1, 3, and 5 1, 2, and 3 5% at 1 h [51] 

Typha 5 1, 2, 4, and 8 5% at 4 h [52] 

Kenaf 5, 7, 10, and 15 1, 3, and 24 5% at 3 h [53] 

Carica Papaya 

bark 
5 

15, 30, 45, 60, 75, 

and 90 min 
5% at 1 h [24] 

Raffia textilis 2.5, 5, and 10 12 5% [54] 

Palm kernel 

cake filler 
5 and 10 1 and 24 5% at 1 h Current study 

3.5. Fourier Transform Infrared Spectroscopy 

The FTIR spectra of untreated and alkali-treated PKCF composites are shown in Fig-

ure 10. The UPKCF30 composites demonstrated a high absorption band between 3640 and 

3200 cm−1 for the O–H stretching vibration of hydrogen-bonded cellulose. In contrast, the 

TPKCF composites exhibited no such significant absorption band. It shows that surface 
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modification reduced the cellulose content. As a result of the OH absorption band, the 

UPKCF30 and TPKCF composites exhibited broad bands in the 3300 cm−1 regions. Due to 

the elimination of lignin and contaminants during alkali treatment, a corresponding drop 

in the intensity of all other peaks has also been seen in alkali-treated spectra [55–57]. The 

band appearing around 3000 and 2800 cm−1 corresponds to the C-H absorption band. The 

results for the treated palm kernel cake filler demonstrate the disappearance of the peak 

at approximately 1700 cm−1, confirming the elimination of lignin and hemicellulose fol-

lowing NaOH treatment. Meanwhile, the peaks detected at 1780 and 1640 cm−1 for un-

treated and treated palm kernel cake filler were attributable to the presence of C=O, which 

represents the groups in hemicellulose and lignin [56–58]. 

 

Figure 10. FTIR spectra of untreated and treated PKCF/ER composites. 

3.6. Thermogravimetric Analysis 

TGA was used to study the thermal stability of untreated and alkali treated PKCF/ER 

composites. The TGA curves and their related thermogravimetric (DTG) derivative curves 

are depicted in Figures 11 and 12, respectively. According to the TGA and DTG curves, 

both untreated and alkali treated samples displayed two separate stages of weight loss, at 

30–150 °C and 200–600 °C, respectively [59]. The initial stage of weight loss was ascribed 

to the evaporation of water (30–150 °C). At temperatures of 105.4 °C, 122.9°C, 111.0 °C, 

104.7 °C, and 103.7 °C, the initial stage of weight loss occurred in UPKCF30, TPKCF501, 

TPKCF524, TPKCF1001, and TPKCF1024, respectively. The degradation of polysaccha-

rides, such as cellulose, hemicellulose, and lignin, was attributed to the second weight-

loss stage, between 200 and 600 °C. Tmax is the degradation temperature that corresponds 

to the maximum weight loss and is related to the maximum decomposition temperature, 

which is also a crucial indicator of the thermal stability of the materials [58,59]. The max-

imum decomposition temperature of UPKCF30 was 313.6 °C. The maximum decomposi-

tion temperatures of TPKCF501, TPKCF524, TPKCF1001, and TPKCF1024, respectively, 

increased to 361.8 °C, 360 °C, 354.8 °C, and 349.7 °C, when PKCF was treated with 5% and 

10% NaOH for 1 and 24 h, respectively. The degradation peak of treated PKCF occurred 

at higher temperatures than that of untreated PKCF, indicating that treated PKCF exhib-

ited greater thermal stability at higher temperatures. With increasing concentrations of 

NaOH up to 5%, the maximum decomposition temperature increased to 361.8 °C and 360 

°C for 1 and 24 h of treatment, respectively. However, when treated with a higher concen-

tration of NaOH (10%), the highest decomposition temperature reduced to 354.8 °C and 

349.7 °C for 1 and 24 h of treatment, respectively. It was determined that the thermal sta-

bility of PKCF might be enhanced by alkali treatment of the appropriate concentration 

and duration [59]. The findings of this investigation indicate that an alkaline treatment 
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with a 5% NaOH concentration and a 1 h treatment time can yield composites with the 

greatest thermal stability compared to other specimens. 

 

Figure 11. TGA curves of untreated and treated PKCF/ER composites. 

 
Figure 12. DTG curves of untreated and treated PKCF/ER composites. 

3.7. Differential Scanning Calorimetric 

Differential scanning calorimetric, often known as DSC, is a technique that measures 

the amount of energy that is either transferred to or removed from a sample as it is un-

dergoing a change in its chemical or physical state [60]. The DSC curve for the PKCF/ER 

composite is shown in Figure 13. The thermal and chemical behaviour of the fibres was 

also observed on the DSC curve as the temperature increased. In PKCF/ER composites, 

endothermic peaks appear in the temperature range of 30–175 °C, indicating the presence 

of water molecule [58,61,62]. In this study, the presence of water molecules in UPKCF30 

was shown by the presence of peaks at temperatures of 38.33 °C and 68.89 °C. On the other 
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hand, in TPKCF501, TPKCF524, TPKCF1001, and TPKCF1024, the presence of water mol-

ecules is indicated by the presence of peaks at temperatures of 73.39 °C, 73.92 °C, 71.94 °C, 

and 71.59 °C, respectively. Alkaline treatment eliminated the peak that appeared at 38.33 

°C. No exothermic or endothermic reactions were observed in the 80–160°C range, indi-

cating that the PKCF is stable between these temperatures [61]. According to the literature 

data, the thermal decomposition of hemicellulose begins at about 180 °C and ends at about 

350 °C [63]. As shown in Figure 12, UPKCF30 has two exothermic peaks, at 191.55 °C and 

195.28 °C, on the DSC thermogram. This is due to the decomposition of hemicellulose. In 

the case of alkaline treatment of PKCF, hemicellulose peaks shifted to high temperatures 

of 226.05 °C, 226.26 °C, 220.84 °C, and 209.07 °C at TPKCF501, TPKCF524, TPKCF1001, 

and TPKCF1024, respectively. This is due to the removal of non-cellulosic materials such 

as hemicellulose and pectin. During alkaline treatment, the breaking of bonds present in 

the PKCF can have some effects and shift the peaks [64]. The appearance of these exother-

mic peaks after 250 °C confirmed the decomposition of cellulose in the PKCF at high tem-

peratures [58,61–63,64]. 

 

Figure 13. DSC thermogram of untreated and treated PKCF/ER composites. 

4. Conclusions 

The influence of filler loading and treatment on the mechanical properties of an 

epoxy composite reinforced with palm kernel cake filler (PKCF) has been investigated. 

For optimal tensile, flexural, and impact performance, the recommended concentration of 

untreated palm kernel cake filler (UPKCF) in an epoxy composite is 30 wt.% filler loading. 

When the filler concentration is increased to 40% by weight, the composite exhibits the 

lowest performance compared to other concentrations. The alkaline treatment with 5% 

NaOH and an hour of soaking time improved the composites’ performance in comparison 

to other alkaline concentrations. FTIR, TGA, and DSC were used to observe the character-

isation of both untreated and treated PKCF/ER composites. The findings demonstrated 

that alkali treatment of PKCF enhanced the composites’ thermal stability. According to 

the findings of this study, PKCF should be exploited as a potential reinforcement element 

for polymer composites. 
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