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Abstract: The investigation of hybrid, woven, natural fiber-reinforced polymer composites as a
substitute reinforcement for fiber polymer composites has recently caught the interest of academics,
industry, and researchers. Woven, natural fiber composites have been implemented in many different
applications, including parts for automobiles, household items, flooring, aerospace, and ballistic
materials. Therefore, this research seeks to establish the thermal and mechanical characteristics of
composites made from rattan strips (RS) and glass fiber (GF)-reinforced epoxy resin (ER). Other than
that, the impact of layering configurations with respect to the thermal and mechanical characteristics
of the RS and GF will be determined. Hand lay-up and a hydraulic press machine produce hybrid,
woven RS and GF laminates. The hybrid composite’s mechanical properties will be investigated using
impact, tensile, and flexural tests. The hybrid woven of the GF/RS/RS/RS/GF composite sequence
demonstrated the highest mechanical properties in comparison to other sequences. The increase from
one to three layers of RS in the core layer of GF hybrid composites enhanced the flexural, impact,
and tensile properties. In addition, the hybridization of rattan and GF is more thermally stable, as
recorded by the high decomposition temperature. As a finding of the research, the woven RS and GF
hybrid is a potential material for automotive applications such as car bumpers, for example.

Keywords: rattan strips; woven; glass fiber; hybrid; composite

1. Introduction

In fiber-reinforced polymer composites, natural fibers exist in various forms, including
continuous, random, and fabric [1]. According to Aisyah et al. (2021), woven composites
comprise textiles with the maximum stability and flexibility [2]. In addition, woven fabrics
are desirable as reinforcements due to their high level of integrity and conformability [3,4].
The purpose of woven textiles is to suit the needs of their intended receiver. During the
previous 10 years, the utilization of woven, natural fibers as a substitute for synthetic
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materials has increased in importance, accompanied by rapid development [5,6]. The
increasing number of investigations into woven, natural fiber-reinforced polymer composite
(W-NFRPC) materials, as depicted in Figure 1, indicates that the appealing qualities of
composite materials have captured the attention of numerous researchers, academicians,
and companies around the globe.

Polymers 2022, 14, 5562 2 of 18 
 

 

conformability [3,4]. The purpose of woven textiles is to suit the needs of their intended 

receiver. During the previous 10 years, the utilization of woven, natural fibers as a substi-

tute for synthetic materials has increased in importance, accompanied by rapid develop-

ment [5,6]. The increasing number of investigations into woven, natural fiber-reinforced 

polymer composite (W-NFRPC) materials, as depicted in Figure 1, indicates that the ap-

pealing qualities of composite materials have captured the attention of numerous re-

searchers, academicians, and companies around the globe. 

 

Figure 1. The number of research articles from 2010 to 2020 using the keyword woven, natural fiber-

reinforced polymer composite (W-NFRPC). 

The qualities of finished woven fiber-composite products are controlled by variables 

such as fiber type, fiber content, fiber layering, fiber stacking sequence, and fiber moisture 

content, all of which have a substantial effect on W-NFRPC processing. There are several 

factors that affect the mechanical and physical characteristics of woven, natural fiber com-

posites, and multiple pieces of research have reported their outcomes [7,8]. Researchers 

have undertaken several initiatives to enhance the mechanical properties of W-NFRPC, 

for example, by the use of a hybridization method between natural woven fiber and syn-

thetic fiber. The performance of hybrid composites can be considered as the weighted sum 

of the individual components, with the purpose being to find a more positive balance 

between the inherent benefits and drawbacks of each component. When utilizing a hybrid 

composite consisting of two or more distinct types of fiber, the benefits of one type of fiber 

may enhance what is lacking in another type of fiber. As a direct result of this, it is possi-

ble, via the utilization of an appropriate material design, to achieve a good balance be-

tween cost and performance [9,10]. When compared to the results obtained from hybrid-

izing a natural fiber with a natural fiber in a composite, the hybridized composite of high-

strength synthetic fibers, for example, carbon fiber and glass fiber (GF), with a natural 

fiber produced excellent mechanical properties [11]. 

There are a growing number of reviews and research articles investigating the effects 

of hybridization with respect to the performance of synthetic fiber and W-NFRPC for au-

tomotive applications, such as automobile bumper beams [12–18]. The primary purpose 

of a bumper system is to protect the vehicle’s body and passengers from collision damage. 

The main components of a front bumper system are the bumper beam, the absorber, and 

the fascia [19]. Note that most polymer composites that were created for bumper beam 

materials were studied for the material’s mechanical properties, which include its flexural 

properties (modulus and strength), tensile properties (modulus and strength), and impact 

characteristics [10]. 

0

100

200

300

400

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N
o

. o
f 

P
ap

e
r

Years

science direct springer link SAGE journal taylor & francis

Figure 1. The number of research articles from 2010 to 2020 using the keyword woven, natural
fiber-reinforced polymer composite (W-NFRPC).

The qualities of finished woven fiber-composite products are controlled by variables
such as fiber type, fiber content, fiber layering, fiber stacking sequence, and fiber moisture
content, all of which have a substantial effect on W-NFRPC processing. There are several
factors that affect the mechanical and physical characteristics of woven, natural fiber
composites, and multiple pieces of research have reported their outcomes [7,8]. Researchers
have undertaken several initiatives to enhance the mechanical properties of W-NFRPC, for
example, by the use of a hybridization method between natural woven fiber and synthetic
fiber. The performance of hybrid composites can be considered as the weighted sum of the
individual components, with the purpose being to find a more positive balance between the
inherent benefits and drawbacks of each component. When utilizing a hybrid composite
consisting of two or more distinct types of fiber, the benefits of one type of fiber may
enhance what is lacking in another type of fiber. As a direct result of this, it is possible,
via the utilization of an appropriate material design, to achieve a good balance between
cost and performance [9,10]. When compared to the results obtained from hybridizing a
natural fiber with a natural fiber in a composite, the hybridized composite of high-strength
synthetic fibers, for example, carbon fiber and glass fiber (GF), with a natural fiber produced
excellent mechanical properties [11].

There are a growing number of reviews and research articles investigating the effects
of hybridization with respect to the performance of synthetic fiber and W-NFRPC for
automotive applications, such as automobile bumper beams [12–18]. The primary purpose
of a bumper system is to protect the vehicle’s body and passengers from collision damage.
The main components of a front bumper system are the bumper beam, the absorber, and
the fascia [19]. Note that most polymer composites that were created for bumper beam
materials were studied for the material’s mechanical properties, which include its flexural
properties (modulus and strength), tensile properties (modulus and strength), and impact
characteristics [10].

Davoodi et al. (2010) developed and tested the mechanical properties of a synthetic
GF and hybrid kenaf fiber-reinforced epoxy composite for passenger automobile bumper
beams. Utilizing a sheet molding compound (SMC) method, hybrid materials were pro-
duced. The results of their investigation indicate that the flexural and tensile properties
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of hybrid kenaf/GF are greater than those of conventional bumper beam materials, such
as glass mat thermoplastics (GMT). Meanwhile, the impact energy of hybrid kenaf/GF
was determined to be 26 J/m, almost half that of the typical GMT [16]. Other than that,
the mechanical properties of jute and GF composites for car bumper beams were evalu-
ated by Olorunnishola et al. (2018). Hand lay-up composites were created by laying the
composites on the bumper mold along with commercial-grade polypropylene spraying.
The samples underwent a 24 h post cure, and the surface was finished with a grinding
wheel. Subsequently, three examples were made using 40% wt GF, 40% wt jute fiber, and
10% wt. GF with 30% wt. jute fiber. Apart from that, a maleated polypropylene (MAPP)
compatibilizer was used to provide bonding between the polymer and the fibers. A uni-
versal testing machine was utilized to assess hardness and impact qualities, whereas a
Charpy V-notch machine was employed to identify impact energy. Moreover, the hybrid
model outperformed the commercial bumper material in terms of hardness and impact
resistance [20].

Maisuriya et al. (2020) investigated the flexural and tensile properties of banana
fiber/glass-reinforced polyester hybrid composites manufactured via the hand lay-up pro-
cess. According to the study’s findings, adding GF to composite materials improves both
the flexural and tensile properties of the materials. Per the results, the flexural modulus
and strength were both raised when the percentage of GF increased from 0 to 30 wt.%,
increasing the MPa from 41.1 to 168.3 and the GPa from 1.3 to 5.7, respectively. Simi-
larly, hybrid composites consisting of 20% banana and 20% GF achieved maximum values
of 152.3 MPa and 4.0 GPa for their tensile strength (TS) and modulus, respectively [21].
Santhanam et al. (2021) investigated the impact of a five-layer stacking sequence of hy-
brid banana and GF-reinforced epoxy composite. The TS of the epoxy reinforced with
banana fiber was 37.2 MPa, but hybridization with GF enhanced the TS to 84 MPa. The
TS of specimens G-B-B-B-G and B-G-B-G-B were closer to each other, as were the tensile
strengths of specimens B-G-G-G-B and G-B-G-B-G, indicating that variation in the stacking
sequence has little impact on the tensile strength. Furthermore, the impact test findings
show that the stacking sequence has no effect. However, hybridization of the banana
fiber composite yielded higher values compared to pure banana fiber composites. The
pure GF-reinforced epoxy composite possesses the highest impact strength value. Hence,
hybridization enhanced the value of impact strength by 54% [22].

On the other hand, Gujjala and colleagues (2014) investigated the mechanical prop-
erties of a hybrid jute/glass-reinforced epoxy composite. Various stacking sequences of
woven hybrid composite laminates were arranged by utilizing the hand lay-up technique.
Furthermore, the modulus and TS of glass/jute/jute/glass (GJJG)-staked hybrid jute and
glass are greater than those of GJGJ, JGGJ, and pure JJJ. The incorporation of GFs substan-
tially raises the TS of pure jute laminate by 66% (GJJG), 51% (GJGJ), and 41% (JGGJ). The
GJGJ hybrid composite established the greatest flexural modulus and flexural strength [23].
Alternatively, Ramnath et al. (2013) fabricated and evaluated the mechanical properties of
an abaca–jute–GF-reinforced epoxy composite. GF is laminated onto the top and bottom of
the composite, improving the polish and adding strength. The tensile strengths of hybrids
made of glass, banana, and jute are 85.9 MPa, 68.4 MPa, and 51.1 MPa, respectively, per
Ramnath. The jute/glass hybrid composite has the lowest TS compared to the other hybrid
composites. In related research, jute/GF-reinforced polyester hybrid composites exhib-
ited the highest impact strength at 752 J/m, in comparison to jute/banana/glass hybrids’
326 and 500 J/m values [24].

The number of layers within a woven, natural fiber laminate affects the mechanical as
well as physical properties of composites made of woven, natural fiber [25]. According to
Bhoopathi et al., 2014 studies, the stacking sequence affects the flexural strength result, with
three layers of GF, as well as two layers of banana fiber, generating much better results than
the hand lay-up of two layers of GF and three layers of banana fiber [26]. Acharya (2014)
assessed the consequences of a layered stacking sequence with respect to the mechanical
characteristics of treated jute and a hybrid GF-reinforced epoxy composite. A four-layered



Polymers 2022, 14, 5562 4 of 17

stack of glass/jute/jute/glass possessed the greatest flexural strength and TS [27]. On
the other hand, Yahaya et al. (2015) examined the woven kenaf–aramid hybrid laminated
composite’s mechanical properties. They reported that the four-layer hybrid composite
outperformed the three-layer samples with regard to TS [28]. Similarly, Rajesh et al. (2018)
found that four layers of jute basket-weaving fabric resulted in superior qualities compared
to other weaves [29]. The experiment was conducted by Rajesh and Pitchaimani (2017),
and Acharya (2014) utilized a four-layer stacking sequence. The results revealed that four
fiber layers greatly increase the mechanical properties compared to three fiber layers [4,27].

In the aforementioned literature, the impacts of a hybrid of woven, natural fiber and
synthetic fiber on the mechanical properties of an epoxy composite for bumper beam
application have been reviewed. This research aims to examine the thermal and mechanical
properties of hybrid, woven rattan/GF-reinforced epoxy composites. In addition, the
influence of the layering number of RS and the hybrid on the tensile, impact, and flexural
properties will be identified and compared. Furthermore, using thermogravimetric analysis
(TGA), the excellent mechanical properties of pure and hybrid composite specimens will be
observed for their thermal properties. The result of this study is expected to demonstrate
the capability of fabricating competitive hybrid rattan strip with glass fiber (HRS/GF)
reinforced ER composites that might be used as a replacement material for the automobile
industry, particularly for bumper applications.

2. Materials and Methods
2.1. Materials

For this research, Manau rattan from Kalimantan, Indonesia, was utilized as a woven
reinforcement. The outside layer (bast) of Manau rattan was cut to a diameter of 4 mm. The
30 cm × 30 cm woven rattan strips (RS) were made in the traditional way at the materials
laboratory at the University of Tarumanagara in Indonesia. The bi-directional E-GF and
epoxy resin (ER) for general use (Epikote 828) were bought from the IZE solution (Selangor,
Malaysia). The thermal and mechanical properties of the epoxy matrix and reinforcement
are presented in Table 1.

Table 1. Thermal and mechanical properties of epoxy, rattan, and glass fiber [30–34].

Properties Epikote 828 Rattan E-Glass Fiber

Density (g/cm3) 1.16 0.45 2.55–2.6
Initial viscosity @ 25 ◦C (Pa s) <10–12 - -
Modulus (GPa) 3 4.97 72–85
Tensile strength (MPa) 60 41.97–121.5 1900–2050
Elongation at break (%) 4 - 1.8–4.8
Glass transition (◦C) 155 - -

2.2. Fabrication of Composite Laminates

The composite laminate production was accomplished by employing a hand lay-up
process. In order to hinder the composite plate process from sticking to the interior surface
of the mold and facilitate removal, wax or a releasing agent was sprayed on it first. After
manually combining the ER and hardener in a ratio of 3:1 for 5 min, the resin was manually
poured into the mold, and the RS was laid on top of the resin. This process was continued
until the appropriate layer was attained, where the tolerance for fabric alignment should
also be considered. For the curing procedure, the mold was laid out at room temperature
for 24 h. In the desired sequence, both pure and hybrid composite laminates are listed in
Table 2. The layering number of RS from 1 to 4 layers and hybrid RS with glass fiber (GF)
from 3 layers to 6 layers will be examined in this study. The outer skin (top and bottom) of
the woven RS was composed of 2 layers of GF. Figure 2 shows the fabrication process of
composite laminates and specimen tests.
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Table 2. Configuration model and label code of specimen test.

Layering Number
Configuration Model and Label Code

Rattan Strip Hybrid Rattan Strip

1
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2.3. Tensile Test

To assess tensile properties, which include the tensile strength (TS) as well as tensile
modulus (TM), specimens according to the ASTM D 638–IV standard were prepared. Using
an INSTRON 3369 (INSTRON, Boston, MA, USA) universal instrumentation, a tensile test
was conducted at a crosshead speed of 2 mm/min. Moreover, the TS and TM average
values were determined based on seven specimens manufactured for each composite
configuration type before testing.

2.4. Flexural Test

Utilizing the universal testing apparatus INSTRON 3369 (identical to tensile testing
procedures), a three-point bending test is employed to analyze flexural strength and flexural
modulus. Note that 127 × 12.7 and 3 mm were utilized to fabricate the specimen in
accordance with ASTM D790-17 standard method. For each type of specimen test, seven
replications were undertaken, and the average data were calculated.

2.5. Izod Impact Test

The Izod impact tests were conducted with Zwick Roell (Zwick Company, Ulm,
Germany) and 10 J of impact energy. This test was conducted at room temperature under
ASTM D256 standard method. The impact energies were determined through testing. The
impact unnotched specimen dimensions were 63.5 × 12.7 × 3 mm.

2.6. Scanning Electron Microscopy (SEM)

In both pure and hybrid rattan strip (HRS)-reinforced epoxy composites, in order to
analyze the fracture and surface morphological behavior of tensile fracture specimens, a
Hitachi TM3030 Plus (Hitachi, Tokyo, Japan) scanning electron microscope was employed.
Using double electrically conductive carbon adhesive tapes, the samples were first sputter-
coated with a thin palladium layer to avoid surface charge before being mounted on a
scanning electron microscopy (SEM) holder. The samples were then evaluated using a
microscope with magnifications of 50× and 100×, having a 10 kV acceleration tension.

2.7. Thermogravimetric Analysis (TGA)

The thermal stability of composite filler composites with treated and untreated fillers
was assessed using the Hitachi STA7200 thermogravimetric analyzer (Hitachi, Fukuoka,
Japan). A 10 mg powdered sample was put in an alumina crucible before being kept in
the furnace. The study was done in a controlled environment with nitrogen gas flowing
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at a rate of 20 mL/min. Here, 10 ◦C/min was the constant temperature change rate. The
experiment was conducted between 30 and 700 ◦C.

2.8. Differential Scanning Calorimetry (DSC)

A differential scanning calorimetric (DSC) analysis of composites was conducted
utilizing a Perkin Elmer DSC 8000 (Perkin Elmer, MA, USA). The test was conducted
using 20 mL/min of nitrogen flow and a 10 ◦C/min heating rate up to 350 ◦C above
room temperature.

3. Results and Discussion
3.1. Tensile Properties

Figure 3 depicts the tensile modulus (TM) as well as the tensile strength (TS) of woven
rattan strips (RS) and the hybrid RS with glass fiber (GF)-reinforced epoxy resin (ER)
composites. Figure 3 shows that the maximum tensile stress occurred at RS3 and gradually
decreased at RS4. This is because, as the number of woven RS rises, the resin concentration
decreases, leaving insufficient resin to transfer the load between fibers. In addition, the resin
is insufficient to cover the fibers, yielding a drop in TS as the fiber content increases [35].
Since it is described as the slope of the stress–strain curve in the elastic deformation region,
the TM of the composites, as illustrated in Figure 3, behaves similarly to the TS. When
reinforced with woven RS, the elastic modulus of the pure epoxy composite rose to roughly
1.30 GPa. Similar to the tensile strength, the composite’s TM reaches its maximum value
(1.77 GPa) in the RS3 specimen and decreases in the RS4 specimen. As the number of RS
utilized in RS4 increased, the TM of the composite decreased. This could be attributed to
the usage of rattan woven strips in RS3, which provide the strongest interfacial adhesion to
the composite, resulting in an excellent load transfer [36]. However, the more rattan woven
strips used in RS4 resulted in low interfacial adhesion, because the amount of ER used was
insufficient to cover all areas of the woven rattan strips. Furthermore, the hemicellulose
content of the composite increased as the number of woven RS used increased.
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Figure 3. Tensile properties of epoxy composites reinforced with woven rattan strips.

The higher the hemicellulose concentration is, the more moisture is absorbed, resulting
in a significant decrement in TM as well as TS [37]. The TM illustrates a similar pattern
compared to the TS discovered in research performed by Ramanaiah et al. (2013). Conse-
quently, their results presented that the TM and TS of the composite rose as the fiber content
did [38]. Per a study by Sharba et al., the TM and TS in the plain-woven, glass-reinforced
unsaturated polyester (UP) hybrid composite specimens exhibited a similar pattern [39].
Agustinus and Sukania [40] found that the average TS of laminated rattan strips with
ER is about 24.57 MPa. Based on their study, it can be concluded that rattan fiber is an
alternative material for making car spoiler applications [40]. This study conceded that the
composites’ tensile properties are determined by a variety of factors, which includes the
type of reinforcement and matrix, the number of layers present, and the matrix and the
fibers’ interfacial bonding [41].
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The tensile fracture of hybrid composites was examined utilizing scanning electron
microscopy (SEM). Figure 4 portrays the fractured tensile specimens of the RS composite
that was examined. Note that a crucial component of composite materials is the interfacial
bonding that progresses between the fiber reinforcement and the resin matrix, resulting in a
higher TS of the composite. Failure mechanisms, including matrix cracking, delamination,
fiber breakage, and fiber pull-out, can have an influence on the woven fiber composites’
mechanical properties [42]. Note that the micrograph of tensile fractured RS1 showed
delamination on the specimen. The delamination in composites caused by inadequate
interfacial bonding between the fiber and matrix resulted in a poor load transfer between
the RS layers. Natural fibers are typically coated with waxy elements; this surface has low
surface energy, resulting in poor adhesion to the polymer matrix [43]. Other than that, the
crack-propagation mechanism is found in all the tensile fractured specimens. The fracture
of the composites, which frequently comes from the creation of displacement discontinuity
surfaces inside the composites, is the main cause of crack propagation. A fracture is
when tension causes an object or material to split into two new pieces. Subsequently, the
mechanism by which a crack spreads within composite materials by cutting through the
structure’s grain grains is known as a transgranular fracture. Meanwhile, intergranular
fractures develop along grain boundaries [44,45].
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A hybrid material combines two or more materials to produce a novel substance that
possesses new characteristics and behaviors. Compared to the properties of composites
made from individual fibers, the hybrid composite had superior mechanical properties [46].
Figure 5 displays the effect of one to four layers of hybrid rattan strips (HRS) mixed with
two plies of GF in the outermost layers on the composite’s tensile properties, as determined
by earlier research. [23,47]. Apart from that, TS and TM increased dramatically as the
number of the hybrid layers was raised up to five. Here, the maximum TS and modulus of
HRS5 or the combination of three layers of RS (RS3) and two plies of GF are 100.40 MPa
and 3.7 GPa, respectively. The addition of two plies of GF to the outer layer of a single RS
increased its TS from 36.50 MPa to 72.50 MPa. Comparing RS3 to RS1 with two layers of GF
(HRS3), the hybrid composite possesses roughly 88%, which is higher in TS. In addition,
the HRS3 composite’s TM is 77% more than that of three layers of RS. The addition of GF
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increases the strength and stiffness of hybrid composites due to their greater TS and TM,
which are around 1900–2050 MPa (TS) and 72–85 GPa (TM) compared to 41.97–121.5 (TS)
and 4.97 GPa (TM) for RS (see Table 1). In addition, the incorporation of GF into RS
composites enhances the load-bearing ability of the hybrid composites, yielding increased
strength and rigidity. This is a result of the excellent stress transfer between the RS plies
and GF plies, enabling the hybrid composites to endure a higher tensile load. This pattern
is consistent with the research conducted by Hariharan and Khalil [48], who worked on oil
palm fiber–GF-reinforced ER. A previous study found that the TS of a single RS from four
different species ranges from 464 to 603 MPa. In the meantime, the TM of a single RS is
between 9.10 and 10.61 GPa [49]. Meanwhile, the tensile properties of GF are higher than
those of natural fiber, as reported in previous studies [50,51]. In research comparing pure
and hybrid, woven jute composites, GF had a higher specific strength than a natural fiber,
and composites demonstrated more improvement when placed at the skin’s outer surface
than when placed in the composites’ core [47]. Utilizing a hybrid composite made up of
two or more different types of fibers might allow the advantages of one type of fiber to
outweigh those of another [52].
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Figure 5. Tensile properties of hybrid, woven rattan strips with glass fiber composites.

The HRS composite samples with various layer configurations experienced a tensile
fracture, as seen by the micrograph of the fractured tensile specimen in Figure 6a–d.
Observations of fractured specimens revealed that the failure of a RS composite occurs
promptly with little fiber pull-out (Figure 4). Still, failure in HRS is regulated by a substantial
fiber pull-out and cracking matrix, as shown in Figure 6a–d. During tensile testing, the
exterior layers of composites composed of GF may have absorbed the stress and distributed
it throughout the composites. Prior to failure, the RS at the core of the composite is subjected
to less stress. The tensile properties of a hybrid composite are identified by the amount
of fiber present, the arrangement of the individual fibers, and the degree to which the
fibers are intertwined, along with the interfacial adhesion that is present between the fiber
and the matrix [53,54]. Figure 6c depicts GF fiber fracture (breakage) and matrix cracking.
The fiber breaking indicates that the configuration of HRS5 strength increased due to the
incorporation of GF with RS in the epoxy composite, which is supported by the results
shown in Figure 5. Matrix cracking occurred during the tensile test due to the brittleness of
the epoxy resin [23]. Furthermore, based on the fiber-breakage phenomenon, the stress was
efficiently transferred from the matrix to the woven fiber. As a result, woven fiber serves
as an effective reinforcement in composites. However, in the HRS6 fractured sample with
two layers of GF and four layers of RS, an occurrence of whole fiber pull-out was observed.
Decreased matrix composition has resulted in weak interfacial adhesion between the fiber
and matrix. The woven fiber and matrix, therefore, have poor interfacial adhesion [5]. As a
result, our evidence supports the HRS6 sample’s low TS values when compared to those of
other samples.
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3.2. Flexural Properties

The flexural characteristics of pure and HRS composites are shown in Figure 7a,b.
Similar to TS, the inclusion of a layer of RS significantly boosted the flexural strength of the
composites. Flexural modulus and strength rose by up to 22.2% and 41.5%, respectively,
as the rattan layer was increased by up to four layers. However, the RS4 result indicates a
decrease in flexural strength compared to the RS3 result. Therefore, the results of this study
show that compared to virgin ER, RS3 possesses the highest TS and TM (Figure 7a). On top
of that, the outcomes of flexural strength and the modulus for the HRS composite sample
also present the highest result at HRS5, where the sample consists of two layers of GF and
three layers of RS, as shown in Figure 7b. The HRS5 result shows an enhancement of 269%
in flexural strength and 321% in flexural modulus, compared with the RS3 samples’ result.
This is due to the GF woven located at the bottom and top of the composite’s reinforcement
configuration, which is vital in transferring the stress applied to the composite sample. The-
oretically, hybrid composite types consist of sandwich, intra-ply, and inter-ply composites.
To create lightweight structures, sandwich-type hybrid composites typically consist of two
or more distinct layers. This design is commonly employed to support bending loads (the
core is constructed of lightweight material, for example, natural fiber, while the skins are
composed of high-strength fiber-composite materials) [55,56]. This study shows that the RS
composite has a lower strength and stiffness property than the GF composite because it
cannot endure the applied load transferred from the epoxy matrix, given the poor interfacial
adhesion between the RS and epoxy matrix as well as the RS’s weak nature. Principally,
the tensile and compressive conditions of the composite sample are combined to produce
flexural behavior [57]. The top surface of the specimen is compressed at the loading point
while the bottom surface is under tension. In compression scenarios, the imparted stress
is easily transferred from the matrix to the GF across the interface. In the meanwhile, the
GF inserted at the bottom of the composite sample successfully strengthened the sample
under tension. The flexural modulus and the strength of HRS6 are reduced by 9.64 GPa and
182 MPa, respectively, when the hybrid is constructed with its highest number of layers.
This is in line with the findings of most earlier studies [24,58].
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Figure 7. Flexural properties of (a) rattan strips (RS) and (b) hybrid rattan (HRS) composites.

3.3. Impact Strength

Figure 8a,b illustrate the impact strength of pure and hybrid RS composites, respec-
tively. In comparison, the configuration of all pure RS specimens is inferior to that of HRS.
RS3 has a maximum impact absorption energy of 0.796 J. For the HRS, HRS5 has the highest
impact absorption energy at 8.323 J. Other than that, the impact energy of pure RS had
substantially risen when the number of layering configurations was increased from one to
three. The maximum stacking concentration of RS4 reduces the impact energy by 0.640 J. A
similar pattern was observed for HRS, in which the hybridization of three layers of rattan
and two layers of GF at the outer surface significantly improved the maximum impact
absorption energy.
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Figure 8. Impact energy of (a) pure rattan strips (RS) and (b) hybrid rattan (HRS) composites.

When natural fibers are employed in a hybrid, the polymer composite’s mechanical
properties may be strengthened by introducing synthetic fibers, since synthetic fibers help
compensate for natural fibers’ limits. In hybrid composites, rattan fiber did not completely
fracture because it was bonded between glass fibers (Figure 9). Due to the impact damage,
the GF at the top was broken. The fiber cracked at various levels, indicating that a certain
amount of energy was absorbed during fiber pull-out. The impact strength findings in
this study are consistent with previous studies, which also revealed an increase in impact
strength when using a GF hybrid with coir fiber to reinforce polyester composites [59].
Apart from that, the maximum configuration of HRS6’s layering sequence reduced the
impact energy to 6.465 J. Similar research by Ramnath et al. (2013) revealed that the impact
energies of three-layer hybrids of jute and abaca with two plies of GF are 16 J and 15 J,
respectively [24].
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3.4. Thermogravimetric Analysis

Thermal analysis is a test that can be employed to assess the structural, chemical, and
physical changes that occur in a material because of temperature changes. Temperature is
an important state variable that influences most structural changes, chemical reactions, and
physical qualities [45]. This study observed two different thermal analysis methods: thermo-
gravimetric analysis (TGA) to measure weight loss with temperature change. Figure 10a,b
illustrate the graph of thermogravimetric analysis (TGA) and derivative thermogravimetry
(DTG) on three samples that were selected based on the mechanical properties of virgin
epoxy, RS3, and five layers of HRS with GF composites (HRS5). Thermal decomposition
of the composites occurs between 30 and 700 ◦C. Additionally, Figure 10 portrays the
percentage of mass temperature curves, demonstrating that adding pure RS3 and HRS5
in ER decreases the weight loss as a function of temperature. In contrast to other samples,
RS3 lost weight at a lower temperature, approximately 4.5% of its initial weight, as shown
in the graph, which is comparable to the loss of mass caused by the evaporation of the
moisture in the rattan. In the meantime, the virgin epoxy and the HRS5 composite had
weight drops of 1.2% and 0.6%, respectively. This is because the hemicellulose in the RS
of the composite absorbs more moisture [60]. Figure 10 shows the DTG curves for the
epoxy, HRS5, and RS3 samples. It is clear that the main peaks on the DTG curve indicate
the maximum decomposition temperature (Tmax), which occurs at temperatures of 378.45,
367.19, and 369.87 ◦C for the epoxy, HRS5, and RS3 specimens, respectively. Tmax refers
to the degradation temperature showing the maximum weight loss. It also relates to the
maximum decomposition temperature. Furthermore, Tmax denotes an essential indicator
showing the material’s thermal stability [31].
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The results of this study clearly exhibit the effect of using RS and GF on the stability
of epoxy composites, with Tmax on epoxy being higher than RS3 and HRS5. The DTG
curves on HRS5 and RS3 show a small shoulder peak before (200–300 ◦C) and after (about
500 ◦C) the main peak or Tmax. These shoulder peaks are usually found in natural fiber
composites. Note that the shoulders found between temperatures of 200 ◦C and 300 ◦C
indicate the presence of hemicellulose, while a temperature of approximately 500 ◦C can be
correlated with lignin decomposition. The decomposition of cellulose from natural fibers
occurs at a temperature of about 370 ◦C, which is associated with the depolymerization and
breaking of the epoxy molecular chains (350–400 ◦C) [61,62]. The findings of this research
demonstrate that there is a main peak or Tmax in the DTG curve, which is almost the same
between the fiber and matrix.

Table 3 depicts the weight loss of the epoxy, HRS5, and RS3 by temperature change.
Over the temperature range of 200–500 ◦C, it was possible to notice a mass loss of 73.96%
in the RS3 composite. The degradation of the lignocellulosic components of the fiber, for
instance, the lignin, hemicellulose, and cellulose constituents, may be responsible for the
mass loss that occurs within this temperature range [63,64]. Between temperatures of
200 and 500 ◦C, virgin epoxy and HRS5 lost approximately 88.56% and 33.56% of their
weight, respectively. Based on these observations, it is possible to deduce that adding
GF to hybrid composites reduced the decomposition temperature [65]. The addition of
GF successfully enhanced the composites’ thermal stability. Identical outcomes were
reported for the thermal decomposition of composites made of jute and GF [66]. This
result is consistent with previous observations of a similar thermogravimetric trend for
composites [67]. At the higher temperature setting of decomposition at 700 ◦C, it was
observed that the char residue of HRS5 composites is the highest compared to those of RS3
and virgin epoxy. According to the findings, while GF hybridization increased both of the
hybrid composites’ initial and final decomposition temperatures, their thermal stability
improved. Similar conclusions were reported by Ghani et al. [47] in their investigation into
the performance of jute/GF with different layering configurations.

Table 3. The weight loss of epoxy, HRS5, and RS3 by temperature change.

Temperature (◦C) Weight Loss (%)

Epoxy HRS5 RS3

25–200 0.95 0.75 5.54
200–500 88.56 33.56 73.96

3.5. Differential Scanning Calorimetry (DSC)

Figure 11 depicts the DSC curve for the epoxy, HRS5, and RS3 specimens. The DSC
curve showed the chemical and thermal response of the fibers as the temperature rose.
Meanwhile, endothermic peaks in the temperature range of 30 to 175 ◦C are seen in the
HRS5 and RS3 specimens, confirming the existence of water molecules. The occurrence of
peaks at 67.28 ◦C and 173.48 ◦C in this investigation demonstrated the existence of water
molecules in HRS5. The occurrence of peaks at 69.18 ◦C and 172 ◦C in RS3 specimens, on
the other hand, indicated the existence of water molecules. The epoxy, HRS5, and RS3
specimens were stable between these temperatures, since no endothermic or exothermic
reactions were seen in the 80 to 160 ◦C range [31,68]. Hence, data from the literature
indicate that hemicellulose thermal decomposition starts at around 180 ◦C and concludes
at around 350 ◦C [31,69]. As shown in Figure 11 the decomposition of the hemicellulose on
the HRS5 and RS3 occurs at temperatures of 254.46 ◦C and 204.26 ◦C, respectively.
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4. Conclusions

Analysis was done on the thermal and mechanical properties of hybrid and pure epoxy
composites reinforced with rattan strips (RS). What happens when glass fiber (GF) is stacked
with rattan and hybrid rattan was identified. The tensile, flexural, and impact strengths of
a pure rattan-reinforced epoxy composite grew as the stacking number rises, according to
the composite’s mechanical properties. In addition, three layers of woven rattan showed
the highest mechanical properties when contrasted with the other configurations. The
hybrid rattan and GF showed that the combination of three layers of RS and two plies of
GF increases the mechanical significantly. The thermal properties of the selected materials,
including virgin epoxy, RS3, and HRS5, were assessed by employing thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC). Here, the high decomposition
temperature revealed that the RS and GF hybridization is more thermally stable. The
hybridization of rattan with GF has effectively enhanced the mechanical properties and
thermal properties of the composites compared to pure rattan. Therefore, it is feasible
to conclude that hybridization is a method for enhancing the strength, modulus, energy
absorption, and thermal stability of polymeric composites. Moreover, the findings of this
study indicate that the hybridization of a rattan/GF-reinforced epoxy composite possesses
the potential to be utilized in automobile bumper beams.
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FIND SIMILAR JOURNALS 

1
Polymer Reviews

USA

82%
similarity

2
Macromolecular Materials
and Engineering
DEU

75%
similarity

3
Polymer Bulletin

DEU

74%
similarity

4
Express Poly

HUN

7
s

SJR

The SJR is a size-independent prestige indicator that

ranks journals by their 'average prestige per article'. It is
based on the idea that 'all citations are not created
equal'. SJR is a measure of scientific influence of

journals that accounts for both the number of citations
received by a journal and the importance or prestige of
the journals where such citations come from It
measures the scientific influence of the average article

in a journal it expresses how central to the global

Total Documents

Evolution of the number of published documents. All

types of documents are considered, including citable
and non citable documents.

Year Documents
2009 3
2010 44
2011 122
2012 79

Citations per document

This indicator counts the number of citations received

by documents from a journal and divides them by the
total number of documents published in that journal.
The chart shows the evolution of the average number

of times documents published in a journal in the past
two, three and four years have been cited in the current
year. The two years line is equivalent to journal impact
factor ™ (Thomson Reuters) metric.

Cites per document Year Value
Cites / Doc. (4 years) 2009 0.000
Cites / Doc. (4 years) 2010 0.000
Cites / Doc. (4 years) 2011 1.234
Cites / Doc. (4 years) 2012 2.107
Cites / Doc. (4 years) 2013 3.306
Cites / Doc. (4 years) 2014 4.629
Cites / Doc. (4 years) 2015 4.320
Cites / Doc. (4 years) 2016 4.408
Cites / Doc. (4 years) 2017 3.649
Cites / Doc. (4 years) 2018 3.672

Total Cites  Self-Cites

Evolution of the total number of citations and journal's

self-citations received by a journal's published
documents during the three previous years.
Journal Self-citation is defined as the number of

citation from a journal citing article to articles
published by the same journal.

Cites Year Value
f

External Cites per Doc  Cites per Doc

Evolution of the number of total citation per document

and external citation per document (i.e. journal self-
citations removed) received by a journal's published
documents during the three previous years. External

citations are calculated by subtracting the number of
self-citations from the total number of citations
received by the journal’s documents.

% International Collaboration

International Collaboration accounts for the articles

that have been produced by researchers from several
countries. The chart shows the ratio of a journal's
documents signed by researchers from more than one

country; that is including more than one country
address.

Year International Collaboration

Citable documents  Non-citable documents

Not every article in a journal is considered primary

research and therefore "citable", this chart shows the
ratio of a journal's articles including substantial
research (research articles, conference papers and

reviews) in three year windows vs. those documents
other than research articles, reviews and conference
papers.

Cited documents  Uncited documents
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Metrics based on Scopus® data as of April 2022

Hay 2 years ago
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