

<u>SURAT - TUGAS</u>

Nomor: 213-D/1004/FT-UNTAR/II/2021

Dekan Fakultas Teknik Universitas Tarumanagara, dengan ini menugaskan kepada Saudara:

Ir. Sunarjo Leman, M.T.

Untuk melaksanakan Mempresentasikan Hasil Penelitian dengan data sebagai berikut:

Judul Makalah	:	Effects of opening dimension in shear wall on the behavior of
		high-rise building structure due to earthquake load
Nama Seminar	:	The 3 rd Tarumanagara International Conference on the
		Applications of Technology and Engineering (TICATE) 2020
Penyelenggara	:	Universitas Tarumanagara
Peran	:	Pemakalah (Presenter)
Waktu Pelaksanaan	:	03 - 04 Agustus 2020

Demikian Surat Tugas ini dibuat, untuk dilaksanakan dengan sebaik-baiknya dan melaporkan hasil penugasan tersebut kepada Dekan Fakultas Teknik Universitas Tarumanagara.

18 Februari 2021 ABSITAS TARDAY Dekan Harto Tanujaya, S.T., MI.I., Ph.D.

Tembusan :

- 1. Kaprodi. Sarjana Teknik Sipil
- 2. Kasubag. Personalia
- 3. Arsip

PROGRAM STUDI :

E : ft@untar.ac.id

⁻ Sarjana Arsitektur, Magister Arsitektur, Sarjana Perencanaan Wilayah dan Kota, Magister Perencanaan Wilayah dan Kota

Sarjana Teknik Sipil, Magister Teknik Sipil, Doktor Teknik Sipil

⁻ Sarjana Teknik Mesin, Sarjana Teknik Industri, Sarjana Teknik Elektro

Jl. Letjen. S. Parman No.1 - Jakarta 11440

P : (021) 5663124 - 5672548 - 5638335

MPWK : (021) 56967322, MTS : (021) 5655801 - 5655802, DTS : (021) 56967015 - 5645907

F : (021) 5663277, MTS : (021) 5655805, MPWK : (021) 5645956

Tarumanagara International Conference on the Applications of Technology and Engineering 2020

Sunarjo Leman

for the contribution as

PRESENTER

Paper Title :

Effects of opening dimension in shear wall on the behavior of

August 3rd - 4th, 2020 Universitas Tarumanagara, Jakarta

Dr. Hugeng, S.T., M.T.

💽 www.untar.ac.id 📑 Untar Jakarta 💆 @UntarJakarta 🙆 @untarjakarta

PAPER • OPEN ACCESS

The Effect of Using Composite Column for Enhancing Structural Stiffness

To cite this article: Christian Juniarto and Sunarjo Leman 2020 IOP Conf. Ser.: Mater. Sci. Eng. 1007 012049

View the article online for updates and enhancements.

The Effect of Using Composite Column for Enhancing **Structural Stiffness**

Christian Juniarto, Sunarjo Leman

Civil Engineering Department, Faculty of Engineering Universitas Tarumanagara

* Christian.325160081@stu.untar.ac.id

Abstract. The aims from this study is to determine which story has the greatest effect on the structure by using a structural column from composite material that is consist of steel and concrete combined together. Using the help of MIDAS GEN software to do the structural analysis. 5 models were made to capture the lateral displacement due to earthquake loading using linear dynamic procedure. Model 1 is a steel only structure followed by next model using composite materials starting from the bottom 2 floors (model 2), 4 floors (model 3), 6 floor (model 4), all floors (model 5). From all of the models that is used, we can conclude that the bottom 2 story is the one that has greatest impact in lowering the lateral displacement.

1007 (2020) 012049

1. Introduction

By combining 2 or more materials we can make a new one called composite materials. In civil engineering it's quite usual for combine steel and concrete together to take advantages of the two, because they have their own weakness such as lack of stiffness for steel structure moment frame, meanwhile for reinforce concrete, it's usually take much more space because concrete as a material has a lower capacity than steel. But sometimes we don't really have to use composite structure especially column in all story of the buildings. It can be used in the lower portion of the buildings, because the lower story will tend to have more capacity and stiffness demand than the upper one.

2. Material

Steel materials that is used refer to ASTM standard wih A572-50 grade, the specification for A572-50 type is 345 Mpa for F_v and 450 Mpa for F_u , with modulus of elasticity (E_s) 200000 Mpa. For concrete, this study use F_{c}^{*} 30 with compression stress up to 30 Mpa and modulus of elasticity (E_c) 25643 Mpa.

3. Structure Modelling

In this study, the buildings consist of 8 story located in Serang, with soft soil classification. The story height is 3.5 m high, the loading type is dead load, live load, and earthquake load. The boundary condition at the base is taken as hinge that restraint 3 degree of freedom (translation in x, y, and z direction). The beam and column connection is assume as rigid connection.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

1007 (2020) 012049

doi:10.1088/1757-899X/1007/1/012049

Figure 1. Floor Plan and Midas Gen Model

Figure 2. 5 models of structure

In **Figure 2.** 5 models of structure it's shown all the models of the structure, for the steel profile the author assign WF 450x200x09x14 for beams, meanwhile for the steel columns the author assign WF 600x300x14x23, and last for encased composite column the structure models use C 800/500, the section for the profile member is shown in **Figure 3.** Member Dimension.

1007 (2020) 012049

doi:10.1088/1757-899X/1007/1/012049

Figure 3. Member Dimension

3.2. Gravity Load and Seismic Load

The gravity loading consist of live load base on rooms and corridors type of loading, and dead load plus superimposed dead load that work on whole floor plan in the structure and present in **Table 1**. Gravity Load. For seismic load, the author input the parameter to the MIDAS GEN and the force result from the analysis is on **Table 2**. Story Forces (kN).

Table 1. Gravity Load						
Story	Live Load					
2	Room	1.92 kN/m ²				
	Corridor	4.8 kN/m ²				
3-8	Room	1.92 kN/m ²				
	Corridor	4.8 kN/m ²				
	Dead Loa	d				
wall		2.5 kN/m ²				
Slab		4.32 kN/m ²				
SDL						
ceramic		1.1 kN/m ²				
Mechani	cal	0.19				
Coiling		kN/m^2				
Cennig		0.1 KIN/III				
Hanger		kN/m^2				
SDL Tot	al	1.44 kN/m ²				

(Sumber: ASCE 7-10, 2010)

1007 (2020) 012049

doi:10.1088/1757-899X/1007/1/012049

Figure 4. Design Spectrum Input Data

Table	2.	Story	Forces	(kN
-------	----	-------	--------	-----

Story	Mod	Model 1		Model 2		Model 3		Model 4		Model 5	
Story	Ex	Ey									
8	282.83	134.02	298.35	228.62	302	230.72	299.38	233.73	310.33	227.63	
7	219.74	116.89	229.7	176.8	233.19	184.57	228.42	179.75	254.76	208.01	
6	158.1	97.15	162.03	122.29	165.26	141.11	173.48	139.45	179.55	164.72	
5	121.52	83.75	122.32	91.54	123.75	106.39	144.89	136.3	135.84	132.61	
4	103.39	73.98	103.09	76.67	111.22	88.03	123.04	121.73	114.96	111.3	
3	97.2	67.01	96.61	69.41	115.48	98.15	114.59	109.49	108.86	101.47	
2	97.52	62.41	107	73.27	117.9	97.17	114.4	100.25	111.1	97.46	
1	67.3	52.45	81.6	76.86	81.5	77.76	79.2	78.2	78.1	79.1	

4. Lateral Displacement

Lateral displacement is computed on x direction due to seismic loading on the x direction (Ex), and also displacement on y direction due to seismic load Ey acting on y axes. The author taking the values of lateral displacement on the center of mass of structure due to the simetrical configuration. The lateral displacement is calculated using respons spectrum load with dead load, SDL, and 50% of live load is present as an assumption for the load case. The lateral displacement is calculated by equation [1]:

$$\delta_{i} = \delta_{ei} C_{d} / I_{e} \tag{1}$$

)

with δ_i = Lateral displacement at story i, C_d = Amplification factor for deflection, I_e = Importance factor.

4.1. Lateral displacement on x direction

The values for the lateral displacement in x direction due to Ex is on **Table 3**. Lateral Displacement on x Direction, and the graph of the lateral displacement is on **Figure 5**. Lateral displacement on x direction graph.

IOP Conf. Series: Materials Science and Engineering	
---	--

1007 (2020) 012049

Table 3. Lateral Displacement on x Direction								
Story	Model 1	Model 2	Model 3	Model 4	Model 5			
8	167.2	164.45	166.1	168.3	172.15			
7	160.6	157.85	159.5	162.25	165.55			
6	150.7	147.95	149.6	151.8	155.1			
5	136.95	134.2	135.85	138.05	141.35			
4	119.9	116.6	117.7	121	123.75			
3	99.55	95.7	96.8	99.55	101.75			
2	74.25	69.85	72.05	73.7	75.35			
1	42.9	39.6	40.7	41.8	42.9			

Figure 5. Lateral displacement on x direction graph

Shown in the **Figure 5.** Lateral displacement on x direction graph there is no significant changes in 5 models. If we choose roof displacement as the target point, we can see that the lowest value is reach on the 2^{nd} model that is 164.46 mm.

4.2. Lateral displacement on y direction

The values for the lateral displacement in x direction due to Ex is **Table 4.** Lateral Displacement on y Direction, and the graph of the lateral displacement is on **Figure 5.** Lateral displacement on x direction graph.

Table 4. Lateral Displacement on y Direction							
Story	Model 1	Model 2	Model 3	Model 4	Model 5		
8	271.7	218.9	209.55	200.2	196.9		
7	266.2	211.2	201.3	191.95	191.95		
6	256.3	196.9	185.9	177.1	183.15		
5	242	177.1	164.45	165	169.95		
4	223.3	151.8	137.5	149.05	153.45		
3	200.2	121.55	119.35	129.25	133.1		
2	173.8	86.9	97.9	106.15	108.9		
1	138.05	61.05	68.75	74.8	77		

1007 (2020) 012049 doi:10.1088/1757-899X/1007/1/012049

Figure 6. Lateral displacement on x direction graph.

In y direction, the biggest lateral displacement on the target point is 271.7 mm located in model 1, and the lowest is 196.6 mm in model 5. The most significant change happen in model 2 compare to model 1, there is a reduction in the target point displacement from 271.7 to 218.9. Meanwhile the other models does not really have a significant impact in reducing the displacement.

5. Conclusion

It is shown that even if we choose a higher stiffness member, it won't really mean that the lateral displacement will always be smaller. Because the mass is also participate in the dynamic characteristic of structures. And from this study, we can conclude that the lowest 2nd story is the one that has greatest impact on lowering the lateral displacement for a structural building in a 8 story tall buildings.

References

- [1] Badan Standardisasi Nasional *SNI 1726:2012 Tata Cara Ketahanan Gempa untuk Bangunan Gedung dan Non Gedung* (Jakarta: BSN)
- [2] ASCE 7-10, Minimum Design Load for Buildings and Other Structures. (Reston Virginia: American Society of civil engineers)