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This paper proposes an effective stress-strain model for integrated analysis and design of cold-formed steel
structures with thin-walled sections. The study focuses on square and rectangular hollow sections made from
high and ultra-high strength steel. Initially, a shell-finite element model (SFEM) was developed and validated
using experimental data, specifically for cold-formed members subjected to axial compression. Subsequently, a
comprehensive parametric study is conducted to establish the stress-strain relationship model through nonlinear
finite element analysis. The proposed model incorporates material nonlinearity, cold-forming effect, local plate
imperfection, and residual stresses into a unified stress-strain curve, leading to advanced structural analysis and
design of cold-formed structures using simple one-dimensional beam-column element. Subsequently, the pro-
posed method is then implemented in the conventional finite beam-column element analysis, demonstrating
consistent agreement with both experimental tests and sophisticated finite shell element results. Finally, the
robustness and validation of the proposed method are established, and its application is exemplified through the
design of a modular integrated construction (MiC) structure. This study highlights the versatility and reliability

of the proposed approach for the analysis and design of cold-formed steel structures.

1. Introduction

Cold-formed steel (CFS) structures have significantly influenced
recent developments in steel construction, particularly in the context of
Modular Integrated Construction (MiC) systems [1]. These structures
offer numerous benefits, such as a high strength-to-weight ratio, ease of
fabrication and mass production, rapid erection work, and excellent
corrosion resistance [2]. It is worth noting that CFS members can exhibit
enhanced strength compared to hot-rolled steel due to various
manufacturing processes [3]. Rossi, et al. [4] have demonstrated that
this strength enhancement is particularly notable in box sections (SHS
and RHS), where the corner portions exhibit higher properties than the
flat sections, rendering them particularly attractive in comparison to
other CFS sections.

Research on the behavior of CFS box sections has reached a relatively
advanced stage, with investigations of various steel grades. This obser-
vation is evident in the work of Gardner and Yun [5], who collated the
results of the material property tests on various CFS grades. More
recently, significant attention and efforts have been spent studying the

* Corresponding author.
E-mail address: a_hussain@mans.edu.eg (A.H.A. Abdelrahman).
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behavior of cold-formed high-strength steel (CFHSS) members with a
minimum grade of S700 [6-8]. Generally, high-strength steel (HSS) has
a yield strength in the range of 350 MPa to 700 MPa, while
ultra-high-strength steel (UHSS) typically exhibits a yield strength above
700 MPa. Interestingly, the current international design codes, such as
AISC-360 [9], AISI [10], and EC3 [11], have not specified structural
design guidelines for steel grades beyond 700 MPa. Therefore, there is
still an opportunity to propose a novel design method that will be more
practical and straightforward for engineers.

Currently, there is a limited availability of alternative design pro-
cedures for CFHSS box sections, especially when accounting for sections
made from high- and ultra-high-strength steel. Ma et al. [12,13]
recommend the traditional Effective Width Method (EWM) and also
assess the feasibility of the more practical Direct Strength Method (DSM)
[14]. These methods establish a relationship between the ultimate
member strength and the cross-section slenderness, but they do not fully
exploit the strain-hardening behavior of the material. Lan, et al. [15]
advocate the Continuous Strength Method (CSM), which was initially
developed for stainless steel structures. This method maximizes the
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utilization of the ultimate member deformation beyond the ultimate
member strength [15,16]. Those few available design proposals mainly
focus on a member capacity-based design with the member imperfec-
tions embedded in the design equations. Meanwhile, the corresponding
member force and deformation demands are quantified based on the
(amplified) first-order analysis as one of the second-order analysis ap-
proaches. Thus, they fit into the common practice of steel structure
design, which still treats the structural analysis separately from the
design work.

The use of “Direct Analysis Method” (DAM) seems to have not been
popular in the CFS design so far. While this method has been extensively
introduced in the design of hot-rolled steel, as seen in the American code
[9] and Eurocode [11], its adoption in CFS design is still limited. The
American Iron and Steel Institute (AISI) [10] has included DAM in its
stability analysis requirement, but the overall approach still follows
AISC-360 [9]. DAM is also often associated with the advanced analysis
method since it automatically considers the member imperfections and
connection deformations in the structural analysis. The advanced anal-
ysis aims to integrate the stability analysis and design process [17]. It
brings a more consistent approach than the traditional effective length
method (ELM) [18]. However, the current advanced analysis is only
limited to compact sections since it relies on the development of a full
plastic capacity of a cross-section. Exploring slender sections in a
consistent advanced analysis framework, Gardner et al. [19] applied
CSM strain limits to analyze hot-rolled steel I-shaped sections under
major-axis bending. Nevertheless, non-compact and slender sections are
easily found in the CFS structures, which are typically failed due to local
buckling with the ultimate resistance below the plastic limit. Formerly,
the effect of local buckling on the beam-column analysis of box sections
was studied by Shanmugam, et al. [20] and Chan, et al. [21]. In their
nonlinear finite element analysis, a stress-strain relationship of a plate
under compression was utilized to consider the local buckling. Thus,
these studies treated a box section as per plate decomposition rather
than a unified single cross-section behavior.

Recently, Modular Integrated Construction (MiC) has gained signif-
icant attention due to its prefabricated nature, enabling higher precision
and faster erection compared to conventional frame-type structures
[22-24]. For example, numerous MiC projects have been undertaken in
Hong Kong, with a substantial portion consisting of steel MiC structures,
primarily with less than six floors, serving as advanced housing solutions
or nursing facilities [25-27]. However, the application of such struc-
tures in Hong Kong faces challenges due to transportation limitations.
Given that the average weight of steel MiC structures is approximately
20 tonnes, this scenario highlights the judicious choice of utilizing
high-strength cold-formed steel for low-rise MiC structures. The corner
posts of such MiC structures are generally square hollow sections or
cold-formed steel angles (3 mm to 4 mm) [28,29]. This variability in
cold-formed steel sections allows for tailored utilization based on the
specific module type, thereby affording design versatility and weight
reduction.

To address the aforementioned challenges, this paper aims to pro-
mote the application of DAM for CFS structure. This method is suitable
for both non-slender and slender cross-sections and incorporates con-
siderations for local buckling within the proposed analysis framework.
Firstly, an effective stress-strain material model was developed through
a comprehensive parametric study focused on the CFHSS box sections
under consideration. This study also adopted the principle of mimicking
local buckling through a constitutive model. However, a much broader
extension was implemented by taking into account the residual stress
and cold-forming effect in the constitutive model. More importantly, the
constitutive model was developed based on a unified single cross-section
behavior rather than plate decomposition. Hence, the model is named an
effective stress-strain relationship. The relationship is used to include
the material nonlinearity in the DAM, which utilizes a line-based beam-
column element.
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2. Effective stress-strain relationship

Initially, the effective stress-strain relationship has been recom-
mended to design a non-compact and slender concrete-steel composite
member. Lai and Varma [30] developed the relationship to analyze a
non-compact and slender concrete filled-tube (CFT) members. It was
demonstrated that shell finite element models (SFEM) for CFT stub
columns were developed to predict the normalized stress versus
normalized strain relationship of rectangular and circular CFT. The
sections had cross-section slenderness between 60 and 100, whereby the
local buckling dominated the failure of the stub columns. Plate imper-
fection, residual stress, strain hardening, and concrete confinement were
incorporated into the SFEM analysis. Therefore, the proposed relation-
ship was named an effective stress-strain relationship.

Lai and Varma [30] used the developed model for a member analysis
using the fiber sectioning method. The algorithm was created to prove
that their proposed relationship and the numerical model of a CFT
beam-column could match against the test results. In another study, Du,
etal. [31] introduced the DAM for slender CFT sections by implementing
Lai and Varma [30] stress-strain relationship to consider the material
nonlinearity. Du, et al. [31] utilized the effective stress-strain relation-
ship to account for distributed plasticity along the member length by
using the fiber discretization technique. This technique is suitable for a
second-order analysis using an advanced beam-column element, which
was established by Du, et al. [17]. The outcome from the latter study has
been added to the last version of NIDA software [32]. Hence, it can be
concluded that an effective stress-strain model performs well in the
analysis using the fiber discretization method.

Another application of an effective stress-strain model can be found
in the numerical modelling for stability design of angle structures pro-
posed by Abdelrahman, et al. [33]. This study generated the effective
stress-strain model from shell finite element analysis (SFEA) results.
Flexural and flexural-torsional buckling modes were considered and
captured in the model. The proposed relationship has considered global
member imperfection and residual stress. Stub column failure was
excluded in the development since it seems rare to find this case in the
application of angle structures. Local buckling failure mode was
excluded therein since it is not intended to design a short column. With
the proposed model, the analysis and design of angle structures can be
unified without calculating the flexural torsional buckling capacity from
a separate design equation. For the validation of the stress-strain model,
the analysis results from Abaqus [34] using 1D-line and shell elements
were compared with test results. The proposed effective stress-strain
model was also used to analyze a truss structure wherein the results
were also validated against test results. The results showed that the
effective stress-strain model embedded in 1D-line element analysis
predicted the outcome of shell element analysis well. Indeed, SFEA is
more powerful since member imperfections and various failure modes
(e.g., torsional-buckling) can be explicitly and effectively modelled.
Such complexities and uncertainties may not be taken into account
when using 1D line elements in the analysis. As such, LFEA (line finite
element analysis) has relatively faster and cheaper computational ef-
forts. Overall, Abdelrahman, et al. [33] proved that the effective
stress-strain model could be implemented in available commercial
software for a more advanced system-based analysis.

3. Finite element modeling

According to the existing studies [30,33], the SFEA was conducted as
the first step to obtain an effective stress-strain model. Like Lai and
Varma [30], SFEA of CFHSS stub columns was also developed in this
study, simulating local buckling failure modes of a pure compression
member. The FEA results were verified using the test result reported by
Ma, et al. [35] and Wang, et al. [8]. The local buckling failure was
dominant in these two test results, which was also reflected in the load
versus deformation (corresponding to the stress-strain) curves generated



A. Prabowo et al.

Table 1
Ultimate strength ratio between experiment (Pgyp) and FEA (Ppga) results.
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Reference Specimen Steel Grade Imperfection magnitude
Actual measurement a/200 a/400 Dawson and Walker[39]
Ma, et al.[35] H80 x 80 x 4 S700 1.05 1.08 1.05 1.04
H100 x 100 x 4 S700 1.03 1.10 1.05 1.02
H120 x 120 x 4 S700 0.99 1.08 1.02 0.99
H140 x 140 x 5 $700 1.02 1.06 1.01 1.01
H140 x 140 x 6 S700 1.00 1.05 1.01 0.99
H160 x 160 x 4 S700 1.03 1.04 1.02 1.02
H100 x 50 x 4 $700 1.01 1.01 1.00 0.98
H200 x 120 x 5 S700 1.00 1.02 1.00 1.00
V80 x 80 x 4 S900 1.09 1.11 1.07 1.07
V100 x 100 x 4 S900 1.03 1.06 1.00 1.01
V120 x 120 x 4 5900 1.03 1.05 1.01 1.02
Mean 1.03 1.06 1.02 1.01
CoV 0.03 0.03 0.02 0.02
Wang, et al.[8] SHS200 x 200 x 4 $500 0.97 0.99 0.97 0.97
SHS200 x 200 x 5 S500 1.06 1.09 1.05 1.03
SHS150 x 150 x 4 S700 1.00 0.97 0.94 0.95
SHS110 x 110 x 4 S700 1.09 1.08 1.02 1.01
SHS100 x 100 x 4 5960 1.11 1.02 1.01 1.00
SHS120 x 120 x 4 S960 1.01 1.00 0.98 0.99
SHS120 x 120 x 3 S960 0.97 0.96 0.97 0.97
SHS150 x 150 x 7 5960 1.31 1.25 1.19 1.16
Mean 1.04 1.03 1.00 1.00
CoV 0.05 0.05 0.04 0.04
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Fig. 1. Verification of load-end shortening curves for specimen Fig. 2. Verification of load-end shortening curves for specimen
H200 x 120 x 5 [35]. V100 x 100 x 4 [35].
from FEA. The outcome of the proposed model from this study is ex- f
pected to be used in conjunction with the force-based beam-column , = 0.068t2> (@D)]
element that occupies the fiber discretization method. “
The finite element model based on Abaqus [34] utilizes the shell B\ 2p P
. . L . - ps
element (S4R) due to its satisfactory performance in simulating the for=4 —_ (—) 2
H—1t) 12(1 —1*)\B—t¢

cross-sectional local buckling [13,36,37]. The element size was then
determined based on the (B+H)/40 value, where B and H were the
flange and web widths of CFHSS, respectively. Measured material
properties by Ma, et al. [6], and plate imperfections reported by Ma,
et al. [35] were adopted in the FE model. Three amplitudes were used for
initial geometric imperfections, as indicated by Yun and Gardner [38].
These included a/400, a/200, and an empirical formula by Dawson and
Walker [39]. The latter formula is shown in Eq. (1), wherein the updated
critical local buckling stress from Seif and Schafer [40] (Eq. (2)) was
used.

The effect of residual transverse residual stress was excluded in the
SFEA as it was negligible based on several studies [12,15,41]. In
contrast, bending residual stress was considered and incorporated into
the material properties test. According to the proposed FEM of Ma, et al.
[12], the stress-strain curve obtained from the corner tensile coupon test
was assigned to the corner part with a 2 t (2 times the section thickness)
extension into the flat portion of the box section. A fixed-ended
boundary condition was applied at the two ends through a reference
point. An Eigen buckling analysis was first conducted, and the resulting
buckling modes were scaled as initial geometric imperfections within
the nonlinear static RIKS analysis in the second step.
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Fig. 3. Verification of load-end shortening curves for specimen SHS
120 x 120 x 3 [8].

The ultimate loads obtained from the SFEA were compared with the
test results, as tabulated in Table 1. It is clearly seen that the predicted
ultimate loads from SFEA were generally in good agreement with the
test results. Moreover, the most accurate results were obtained when the
imperfection magnitude from a modified Dawson and Walker [39]
empirical formula is imposed. Meanwhile, the load-axial shortening
curves from the FEA were sufficiently close to the test curves, as shown
in Fig. 1, Fig. 2, and Fig. 3. In addition, Fig. 4 shows a comparison of the
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typical failure mode obtained from the test and FEA. Overall, the
developed FEM is reliable and can be used for a parametric study.

4. Development of effective stress-strain model for CFHSS
4.1. Scope and limitations

An extensive parametric study was conducted to develop an effective
stress-strain model for CFHSS, involving 105 square hollow sections
(SHSs) and 108 rectangular hollow sections (RHSs). Three sets of yield
stress (f,) and Young’s modulus (E) were selected from the test results of
Ma, et al. [6], as collected in Table 2. Meanwhile, Table 3 presents the
list of sections and the various parameters considered to develop the
effective stress-strain model. The corner radius (r) was equal to the
thickness (t) when t was smaller than 7 mm, and r was equal to 1.5t for
sections with t > 7 mm. The normalised section slenderness (4,) of a
section was calculated from Eq. (3). This variable becomes a vital
parameter to control the scope of the parametric study. Ma, et al. [13]
claims that elastic local buckling failure will exhibit when 4, value is
higher than 1.28.

N

Table 2

Material properties for parametric study.
Steel Grade fy (MPa) E (GPa)
S700 719 212
S900 982 208
S1100 1073 205

Fig. 4. Comparison of failure modes between a test result (left) [13] and FEA (right).
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Table 3
Parametric study of SHS and RHS.
Cross- HxB t (mm) An
section (mm)
S700 S900 S1100
SHS 300 x 300 3,35,4,5,6,8, 1.46 - 1.72 - 1.81 -
10 5.59 6.6 6.95
270 x 270 3,35,4,5,6,8, 1.28 - 1.51 - 1.59 -
10 5.01 5.91 6.22
250 x 250 3,35,4,6,8,10 1.16 - 1.37 - 1.45 -
4.62 5.45 5.74
220 x 220 3,4,5,10 0.99 - 1.17 - 1.23 -
4.04 4.76 5.02
200 x 200 3,35,5,6, 10 0.87 — 1.03 - 1.23 -
3.65 4.31 5.02
180 x 180 3.5, 10 0.76, 0.89, 0.94,
2.76 3.26 3.43
150 x 150 3.5, 10 0.58, 0.69, 0.72,
2.26 2.67 2.81
120 x 120 3.5,6 0.93, 1.1, 2.08 1.16,
1.76 2.19
RHS 300 x 180 3,35,4,5,6,8, 1.16 - 1.37 - 1.45 -
10, 12 5.59 6.60 6.95
270 x 150 3,35,4,5,6,8, 1.28 - 1.51 - 1.59 -
10 5.01 5.91 6.22
250 x 120 3,35,4,6 2.19 - 2.59 - 2.73 -
4.62 5.45 5.74
220 x 120 3,4,5,10 0.99 - 1.17 - 1.23 -
4.04 4.76 5.02
200 x 100 3,4,5,6,10 0.87 — 1.03 - 1.23 -
3.65 4.31 5.02
180 x 100 3.5, 10 0.76, 0.89, 0.94,
2.76 3.26 3.43
150 x 100 3.5,10 0.58, 0.69, 0.72,
2.26 2.67 2.81
120 x 100 3.5,6 0.93, 1.1, 2.08 1.16,
1.76 2.19

In developing the effective stress-strain model, both studies [30,33]
agreed that the proposed model had to be conservative. Furthermore,
these studies [30,33] also stated that developing a model that precisely
simulates all the loading conditions was impractical. The fundamental
behavior of steel plates under pure compression was considered by
analyzing the stub columns. An elastic-rigidly plastic model has been
selected for the constitutive relationship on the tension fiber for tensile
action.

4.2. Model development

The effective stress-strain model proposed in this study has consid-
ered the following aspects:

e Strength enhancement due to cold-working process.
e Bending residual stress.

e Elastic and inelastic local buckling.

e Geometric imperfections.

The model can be used to simulate material nonlinearity in the
analysis in combination with the application of the 1D beam-column
element developed by Du, et al. [17]. The idea behind this study was
to bring the generalized results of shell FEA of a short member into the
1D finite element analysis of a long beam-column member.

The effective stress-strain model accounts for all sources of nonlin-
earity, including both material and geometric factors. The design ob-
tained from the nonlinear analysis can optimize the structural
performance even though the strength limit is achieved. With the pro-
posed model, the design of a slender section can be more optimum due
to the mobilization of post-buckling capacity. This principle differs from
the current practice, which focuses on using first-order analysis and
compact sections. The second-order effect is usually considered by using
amplification and or additional notional loads. Meanwhile, material
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nonlinearity is considered by using a reduction factor applied to Young’s
modulus as specified in AISC-360 [9].

The recommended effective stress-strain model was extracted from
results analyzed using four-node shell element S4R in ABAQUS. The load
versus end-shortening curve from the analysis outcome was converted to
a normalized compressive stress-strain relationship (o - €). Compressive
stress (0) was obtained by dividing the load capacity with the cross-
sectional area (A), and the compressive strain (¢) was calculated by
dividing the end-shortening with the stub column length (L). Due to the
consideration of short column failure, L was equal to three times the
nominal section size (B). For RHS, the average between larger (H) and
smaller (B) section sizes was used to calculate L. Both compressive stress
and strain values were then normalized to yield stress and yield strain,
respectively. As a result, the normalized stress-strain for various slen-
derness (b/t) and f, is presented in Fig. 5.

From Fig. 5, it can be observed that as the section becomes more
slender, the normalized compressive stress factor (¢/f,) significantly
decreases and is well below 1. It was assumed that buckling took place
once the ultimate load was achieved. Elastic local buckling would be the
typical failure mode if a section buckled under the yield stress. In all
figures, none of the sections reached inelastic local buckling. Apart from
section slenderness, the effect from f, was also seen. The ultimate
compressive stress decreases when f, increases. This trend was also
similar to the finding in [33] and [30]. Finally, it was observed that the
member’s buckling behavior was influenced by the b/t ratio. As the b/t
ratio increased, the strength degradation became more gradual
compared to the less slender section. It can be conjectured that the
strength degradation correlated with the failure mode, as illustrated in
Fig. 6. For the most slender section (b/t = 96), local buckling was uni-
formly spread throughout the length, while for the most stocky section
(b/t = 25), local buckling was concentrated at the mid-length. For the
three figures in Fig. 5, it was observed that the post-buckling strength
degradation became gradually constant when the compressive strain
reached four times the yield strain (4¢,).

Based on the parametric study, the compressive stress-strain curve
could be simplified into the trilinear curve, as illustrated in Fig. 7. Three
critical points were marked in the curve comprised of the peak buckling
stress (0,), post-buckling stress limit (¢2), and secant modulus stiffness
before buckling (E;), and plotted in a nondimensional format. These
three variables are also recommended by Abdelrahman, et al. [33]. The
secant modulus was chosen over a tangent modulus, as the model should
be conservative and straightforward for application. Es is used to
calculate the strain at 4e,.

The normalized buckling stress from the FEA versus the 4, is plotted
in Fig. 8. From the figure, it can be observed that there was a consistent
trend between the decreasing of buckling load with the increasing of
slenderness. By using regression analysis, an equation of the trendline
was formed. All of the equations were developed based on the “Power”
format. This format was relatively simple and easy to maximize R? value
close to 1. The peak of normalised buckling stress for SHS and RHS
sections is written in Eq. (4) and Eq. (5), respectively. For RHS sections,
an additional variable was added to consider the aspect ratio.

j—?: 119(2,7°7) < 1.0 @
Yy
0.35
% N
— = 1.09(4, - <L
= 1090 )[B} 1.0 ©)

For sections with 1, less than 1.28, the peak buckling stress was
limited to 1. The factor of 1.28 was a limit between elastic local buckling
and inelastic local buckling based on Ma, et al. [35]. The peak stress was
limited to yield stress for a conservative approach. Experiment results
showed that when inelastic local buckling occurred, the failure stress
would be higher than the yield stress. This can be seen in Fig. 8(a) and
(b), whereby there were several peak stress values higher than 1 for 1,
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Fig. 5. Normalised compression stress-strain of SHS.

less than 1.28.

The strain at peak stress was approached by calculating the secant
modulus of elasticity (E;) since it would be relatively simple because the
original compressive stress-strain curve from FEA was nonlinear. The E;
was normalized to Young’s modulus to have a consistent form with the
other parametric equations. The trend of normalized E, values with 4,
closed to the Eq. (6) and Eq. (7). The trendlines were drawn in Fig. 9,
together with the results obtained from the parametric study. It was
realized that the results were more scattered than the peak stress.
However, Eq. (6) and Eq. (7) were the best results from the regression

analysis model; R? is more than 0.79 for those equations.

% — 0.94(2, ) ®)
0.35
% =0.86(4, %) {%} %)

Another important parameter in Fig. 7 is the post-buckling stress
limit (02). As mentioned, the compressive stress would decrease slightly
once the strain reached 4e,. Simply speaking, the stress would be
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Fig. 6. Failure mode of a stub column.
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Fig. 7. Effective stress-strain model for CFHSS.

constant from this point onward. From the parametric study, ¢, was
plotted against 4, as described in Fig. 10. A trendline was drawn in the
two figures, and an equation was formed. Eq. (8) and Eq. (9) were the
trendline equations for the different cross-sections. Again, the stress
obtained from these equations was constrained to f, for conservative
design, as it could potentially exceed f, for stocky sections.

%2 _0.83(2,7°7) < 1.0 )
fv

0.3
(] —osy [H
% 0932, |Z| <10 9
%~ 093, [3] ©

Since all the parameters in the proposed stress-strain model have
been explored, the next stage is to calibrate the model with the experi-
ment results. The application of the proposed model to the member
design will also be presented in the following part. It is also interesting to
verify the results with the member test results.

5. Application of effective stress-strain model

This section aims to validate the proposed stress-strain relationship
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Fig. 8. Relationship between normalized buckling stress and A,,.

for predicting the behavior of CFS box sections made from high-strength
steel. Additionally, it explores the validity of the proposed 1D beam-
column element approach for nonlinear collapse analysis of steel
members with CFS box sections. Experimental results and those gener-
ated from sophisticated finite shell element models are used for
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Fig. 9. Relationship between secant modulus (E;) and A,.

verifications and validations. With these purposes, the proposed stress-
strain relationship is implemented within the B31 beam-column
element in ABAQUS, using the scripting technique [42-44] that im-
poses the proposed curve as a constitutive material model.

In order to conduct comprehensive comparison studies, the following
four sets of results are analyzed: 1) 1D line FE models with the proposed
stress-strain relationship (implicitly accounting for imperfections),
denoted as LFEMI; 2) 1D line FE models with the material stress-strain
relationship (with no allowance for material or geometric imperfec-
tions), denoted as LFEM; 3) the sophisticated shell FE models (SFEM);
and 4) the experimental tests.

Finally, a modular integrated construction (MiC) structure is
designed to demonstrate the versatility and reliability of the proposed
approach for the analysis and design of cold-formed steel structures.

5.1. Comparisons between the simplified 1D line element method and shell
FE models

This example demonstrates comparisons between results obtained
from sophisticated SFEM and the proposed LFEMI for collapse analysis
of CFS members made from box sections. Herein, the analysis matrix
includes a wide range of cross-section dimensions as summarized in
Table 4: (a) cross-sectional width B = 70 — 400mm; (b) width-to-
thickness ratio B/t = 15—-200 for slender sections; (c) yield stress F,
= 500 —1100MPa for high-strength steel; and (d) slenderness coefficient
An = 1.25 — 10. Note that the influence of initial imperfections is
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Table 4
Analysis matrix for CFS hollow box sections.
No. of specimens ~ B(mm) t(mm) B/t F,(MPa) .
E\/E
tVE
100 70 to 400 1to9 15 to 200 500 to 1100 1.25to0 10

included via the proposed effective stress-strain model. The ultimate
loads obtained from the two methods (i.e., SFEM and LFEMI) are
normalized by dividing those loads by the corresponding squash load
(Py =A x F)); accordingly, they are plotted in Fig. 11(a) for comparison.
Results from the LFEMI are within 10% below those obtained from so-
phisticated SFEM on the conservative side.

On the other side, showing that the analysis matrix includes a wide
practical range of CFS members, Fig. 11(b) depicts the predicted LFEMI-
to-SFEM ratios versus the slenderness coefficient (1,). The slenderness
coefficient mostly varies between 1 and 4.5, while a few members have a
high B/t ratio for slender sections. The mean LFEMI-to-SFEM ratio is
0.94, with a relatively low coefficient of variance (COV) of 0.03. It be-
comes clear that developing an effective stress-strain relationship that
implicitly accounts for cross-sectional geometric imperfections is crucial
for more accurate results, thereby adopting LFEMI for a practical design
of CFS structures comprising box sections. The proposed stress-strain
relationship can precisely simulate the cross-sectional buckling
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Fig. 11. Comparisons between LFEMI results and SFEM.
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Fig. 12. The configuration of a single-span portal frame comprising CFS box sections.

behavior for advanced analysis.

To further examine the proposed approach for a second-order in-
elastic analysis of CFS structures comprising CFS box sections, the pro-
posed stress-strain relationship is implemented within the LFEM to
analyze a single-span portal frame subjected to vertical and lateral loads.
The geometric configurations, including dimensions, loading, and

boundary conditions, are plotted in Fig. 12, together with the Eigen-
buckling mode for geometric imperfections within SFEM. The portal
frame is assembled with CFS square hollow sections (SHS) with outside
dimensions of 400 mm and a wall thickness of 9.0 mm, making the
cross-sectional slenderness B/t = 44.44, whereby the local buckling
dominated the failure mode. The Young’s modulus, Poisson’s ratio, and
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Fig. 14. Verification of load-end shortening curves SHS 120 x 120 x 3.

yield stress are 210 GPa, 0.3, and 500 MPa, respectively. The frame is
subjected to two concentrated vertical loads, F, at the corners, and a
lateral load of 0.0125 F, as shown in Fig. 12. As aforementioned, the
frame is analyzed adopting SFEM, LFEM, and the LFEMI.

Results obtained from sophisticated SFEM with initial geometric
imperfections are plotted in Fig. 13. The first Eigen buckling mode is
scaled with a maximum amplitude of B/400, where B is the outside
width of the SHS. Besides, the load-displacement curves resulting from
the LFEM and LFEMI are depicted for comparison. It can be clearly seen
that adopting the LFEM and implementing the material stress-strain
relationship overestimates the failure load compared to the SFEM re-
sults. However, adopting the proposed stress-strain relationship within
the LFEMI can predict the buckling behavior of steel frames comprising
CFS box sections on a conservative side. In conclusion, Figs. (11) and
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Fig. 15. Verification of load-end shortening curves SHS 150 x 150 x 4.

(13) show the robustness and accuracy of the proposed approach in
analyzing and designing CFS structures comprising box sections.

5.2. Comparisons between the proposed 1D line element method and
experimental results

In this example, experimental results reported in Section 3 are
further utilized to validate the proposed 1D line element approach for
simulating columns with CFS box sections. Test results by Wang, et al.
[8] which investigate the local buckling failure modes for such mem-
bers, are plotted in Figs. 14 and 15. Two specimens (SHS 120 x120x3
and 150 x150x4) are modelled, while the material properties, loading
configurations, and boundary conditions are adopted as reported in the
test program. Load versus displacement curves for tested specimens are



A. Prabowo et al.

Structures 62 (2024) 106189

Table 5
Ultimate loads for tested specimens made from CFS box sections.
specimens Test[8] SFEM LFEMI LFEM
P, kN P, kN Dif. % P, kN Dif. % P, kN Dif. %
SHS 120x120x3 835.46 830.50 -0.59% 828.69 -0.81% 1529.59 83.08%
SHS 150x150x4 1150.23 1140.5 -0.85% 1144.44 -0.50% 1862.23 61.90%
*#*
H =200 mm
= B =200 mm

(a) a 6-floor MiC structure

_— Co , g I

Thickness = 4 mm

(c) Posts’ size in all modules

=

Cy

== (b) Ground floor elevation & monitoring posts

Fig. 16. A six-story MiC structure; geometric configurations and cross-section dimensions.

compared, as aforementioned, with different numerical approaches (i.e.,
SFEM, LFEM, and LFEMI). The numerical incorporation of the proposed
compressive effective stress-strain relationship and the material tensile
stress-strain relationship (Fig. 7) within the line FE method in ABAQUS
represents the results from LFEMI and LFEM, respectively. Further, re-
sults from the more realistic but sophisticated SFEM are depicted for
comparison.

Moreover, the ultimate loads for the tested specimens are summa-
rized in Table 5, wherein the differences between the various numerical
methods and experimental results are presented. From the results
illustrated in Figs. 14 and 15 and Table 5, it can be clearly seen that the
LFEMI considering the member local imperfections, can predict the
load-displacement behavior of such members and in good agreement
with test results and SFEM. Conversely, the LFEM utilizing the material
tensile stress-strain curve overestimates the ultimate loads observed
from load-displacement curves in Figs. 14 and 15.

5.3. A design example of the 1D line element for the design of MiC
structures

A design example utilizing the proposed advanced design method is
demonstrated here. A six-story MiC structure, depicted in Fig. 16, was
investigated, where each module is designed with the dimensions of
3.2 m(height) x 3 m(width) x 6 m(length). The dead load (DL) and live
load (LL) for floor slabs are taken as 4.0 kPa and 2.5kPa, respectively;
while the dead load for module roof level is 0.9 kPa. The wind load (WL)
is 2 kPa throughout the height. The critical design load combinations as
following CoPHK [45] are considered, including 1.4DL+ 1.6LL,
1.4DL+ 1.4WL, and 1.2DL+ 1.2LL+ 1.2WL. The model is built using
software NIDA [32], employing second-order nonlinear P-A-é analysis to
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determine the internal forces and moments in the structural members.
The relevant beam-column element allowing for member initial imper-
fection as well as the co-rotational framework for nonlinear analysis can
be referred to the references [46,47]. Both global frame and local
member imperfections are considered. The global frame imperfection is
taken as H/200 while the member initial imperfection is taken as
L/1000 as recommended in CoPHK [45], where H is building height and
L is member length. Subsequently, the traditional effective width
method (EWM) as outlined in ANSI/AISC 360-16 [9] is employed to
estimate the cross-sectional capacity of the four columns labeled (C; —
C4), as shown in Fig. 16. Moreover, section capacity factors (SCF) were
computed from two models: one utilizing the material stress curve
(LFEM) and another incorporating the proposed effective stress-strain
model (LFEMI) for comparison purposes.

The design results of four ground-floor columns were juxtaposed,
comparing the application of the effective width method (i.e., AISC)
with the advanced LFEM in NIDA, to showcase the efficiency and con-
venience of the proposed LFEMI. The modules are interconnected both
vertically and horizontally through pin connections, as depicted in
Fig. 16. The chosen column locations include building corners, the
midpoints of both the long and short sides of the building and the center
of the ground floor. These columns are constructed using cold-formed
plates to form 200x200x4 sections, employing high-strength steel
with f, = 690 MPa, E = 205 GPa. The applied loads consist of a super-
imposed dead load of 4 kN/m? on the floor and a roof load of 0.9 kN/m?2.
Additionally, live loads for both the floor and roof are set at 2.5 kN/m?.
In this investigation, the load combination of 1.4DL + 1.6LL is utilized.

Referring to Eq. (4) and Eq. (8), for the proposed model’s posts, o,
and o5 are computed to be 381 MPa and 265 MPa, respectively. Using
the EWM, the sections’ nominal axial and nominal flexural strengths are
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Table 6

Section capacity factors for columns using different design methods.
Column Mark AISC! LFEM? Diff.2"! LFEMI® Diff.3~1 SFEM* Diff.*~?
Cl 0.729 0.427 -41% 0.772 6% 0.692 -5%
C2 0.590 0.342 -42% 0.619 5% 0.563 -4%
C3 0.687 0.400 -42% 0.725 5% 0.557 -6%
Cc4 0.587 0.328 -44% 0.594 1% 0.652 -5%

determined as 1030 kN and 89.577 kN.m, respectively. Then, the
interactive equation, Eq. (10), is adopted for calculating the section
capacity factor.

Xl

X

+

+

<10 10)

|
£
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where, P is the required compressive axial strength, M, and M, are
required flexural strengths, P, is the available axial strength and Mg, and
M,y are available flexural strengths. The section capacities of the
selected columns employing different design methods are shown in
Table 6.

From these findings, several conclusions can be made. Firstly, the
LFEM, without accounting for the local buckling of the cold-formed
sections, overestimates the column capacities by up to 40%.
Conversely, utilizing the EWM and the proposed LFEMI yields safer
designs by considering local buckling. The difference between the pro-
posed LFEMI method and the EWM is around 5%, and it is noticeable
that for posts controlled by compression instead of bending, the differ-
ence is only 1%. The LFEMI method not only streamlines the design
process by enabling simultaneous design and analysis but also ensures a
secure design without unnecessary conservatism. Theoretically, the
SFEM method using shell element can provide more accurate results.
However, this method need much modelling effort with significant in-
crease of computer time.

6. Conclusions

Cold-formed steel structures show many benefits in construction
such as cost-effectiveness, lightweight, high design flexibility and fast
speed of construction. In this paper, an effective stress-strain model is
proposed for integrated analysis and design of cold-formed steel struc-
tures with thin-walled sections. The presented material model, named
the effective stress-strain relationship, was generated from the 2-dimen-
sional (2D) shell finite element analysis (SFEA) of stub columns to
include the member imperfections and cold-forming effect. Thus, the
material nonlinearity could be captured from the proposed material
model and is suitable for the direct analysis method for frame structures
constructed from slender sections. The validation of the proposed ma-
terial model included two stages. The first was conducted by comparing
the results of frame analysis using shell finite elements and 1D line el-
ements. In addition, the second stage of the validation compared the
results obtained from LFEMI with experimental results. Based on the
analyses results and comparisons presented in this paper, the following
conclusion can be drawn.

e It was shown that frame analysis using the 1D line elements com-
bined with the proposed effective stress-strain relationship and
initial member imperfection (LFEMI) offered more conservative re-
sults than the sophisticated SFEA. This finding can be conjectured
due to simpler and less computational efforts from the typical frame
analysis approach using 1D line elements.

The analysis method using LFEMI provided accurate results due to
the inclusion of geometric imperfection and material nonlinearity.
The load versus shortening curve obtained from LFEMI analysis
matches well the test curves. Hence, the proposed effective stress-
strain relationship can be recommended for advanced frame
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analysis, including the member imperfections for structures
comprising members with slender sections.

o It was shown that the LFEMI is capable of facilitating both analysis
and secure design. This approach finds applicability in various do-
mains, including but not limited to full-scale structures, such as
Modular Integrated Construction (MiC) systems. Notably, it holds
promise for the advancement and proliferation of structural design
involving the utilization of high-strength cold-formed steel sections.
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