
JMTS

JURNAL MITRA TEKNIK SIPIL

Volume 8 No. 1 Februari 2025

e-ISSN : 2622-545X Program Studi Sarjana Teknik Sipil UNTAR

JMTS: Jurnal Mitra Teknik Sipil Vol. 8 No. 1, Februari 2025

Daftar Isi

ANALISIS PERBANDINGAN MUTU BETON DENGAN MENGGUNAKAN DAN TIDAK MENGGUNAKAN ZAT ADITIF Kevin William Putra Mulyadi dan Arif Sandjaya	1-8
ANALISIS KERUSAKAN PERKERASAN LENTUR JALAN PADA RUAS JALAN GERBANG SEBENAQ – SIMPANG TBA MENGGUNAKAN METODE PCI Flora Emiliana Long dan Arif Sandjaya	9-18
ANALISIS PERBANDINGAN PRODUKTIVITAS METODE PEKERJAAN GALIAN BATU MENGGUNAKAN ROCK DRILL BREAKER DAN BLASTING Muhammad Davva Pratama dan Arif Sandjaya	19-28
ANALISIS PENGARUH KONDISI LINGKUNGAN TERHADAP MATERIAL BETON DAN KEKUATAN BETON PADA PROYEK KONSTRUKSI GERJEA SEBENAQ Fredi dan Arif Sandjaya	29-36
ANALISIS PENYEBAB KETERLAMBATAN PADA PROYEK X DI SLIPI MENGGUNAKAN METODE <i>RELATIVE IMPORTANCE INDEX</i> (RII) Jason Christian Sukma dan Arif Sandjaya	37-44
PERBANDINGAN KEBUTUHAN BESI DAN BIAYA MENGGUNAKAN METODE <i>BAR BENDING SCHEDULE</i> (BBS) PADA PROYEK RENOVASI RUMAH TINGGAL <i>Vania Yori Wakano dan Arif Sandjaya</i>	45-50
ANALISIS PENGARUH KETERLAMBATAN PROYEK TERHADAP ESTIMASI BIAYA DAN WAKTU PENYELESAIAN PROYEK X DI SAWANGAN Antonius Erick Susanto dan Henny Wiyanto	51-62
OPTIMALISASI BIAYA PEMBANGUNAN STRUKTUR DINDING PENAHAN TANAH DENGAN REVETMENT WALL PADA PERUMAHAN X Hauwendy dan Arianti Sutandi	63-76
PENGHEMATAN BIAYA PEMBANGUNAN GEDUNG X DENGAN MUTU BETON BERBEDA Laurensius Evan S dan Mega Waty	77-86
POTENSI PENGGUNAAN IPAL DAN SPAH UNTUK MENGHEMAT PENGGUNAAN AIR PADA GEDUNG Z Husain dan Vittorio Kurniawan	87-98
PERBANDINGAN DAYA DUKUNG TIANG PANCANG BERDASARKAN UJI SONDIR DAN TES PDA DI PROYEK RUKO X Christina Veronica dan Arianti Sutandi	99-108

JMTS: Jurnal Mitra Teknik Sipil	EISSN 2622-545X
Vol. 8 No. 1, Februari 2025: Daftar Isi	100 110
PERENCANAAN DESAIN DUCT BANK PADA PROYEK X Syeimaa Salsabila dan Basuki Anondho	109-118
METODE KONSTRUKSI TOP-DOWN PADA PROYEK JAKARTA GELORA MARRIOTT HOTEL Budi Hendarin dan Basuki Anondho	119-132
ANALISIS PENGARUH ARUS DAN KECEPATAN KENDARAAN TERHADAP KEBISINGAN PADA KAWASAN SD NEGERI 1 PALAPA BANDAR LAMPUNG	133-144
Nadya Priartanti Rahayu, Aleksander Purba, dan Galih Rio Prayogi	
PERBANDINGAN METODE <i>EARNED SCHEDULE</i> DAN <i>EARNED VALUE</i> DALAM PENGONTROLAN PROYEK PADA ASPEK WAKTU Daniel Nathan Iskandar dan Oei Fuk Jin	145-158
ANALISIS <i>LEADERSHIP</i> TENAGA AHLI PADA KONSULTAN PERENCANA JALAN TOL PT X <i>Fakhry Husein Lubis dan Wahyu Indra Sakti</i>	159-168
STUDI BANDING KUAT TARIK ANGKUR PADA ANGKUR CAST-IN DAN POST INSTALLED Daniel Christianto, Yenny Untari Liucius, Sunarjo Leman, Davin Kholin, dan Nelson Zorovian	169-178
EVALUASI KINERJA STRUKTUR RANGKA BETON BERTULANG BANGUNAN EKSISTING DI SAMARINDA Josh Maverick, Gerard Christian Joelin, Krismanto Kusbiantoro, Cindrawaty Lesmana	179-192
ANALISIS KETAHANAN LENTUR DAN KELAYAKAN LINGKUNGAN PADA PELAT BETON FEROSEMEN BERBAHAN LIMBAH SANDBLASTING DAN FLY ASH Luqman Cahyono, Wiwik Dwi Pratiwi, Firda Fardina, dan Dika Rahayu Widiana	193-200
TAHAPAN PEKERJAAN STABILITAS LERENG DENGAN RETAINING WALL PADA PROYEK X Helga Lenita dan Edison Leo	201-212
ANALISIS PERBANDINGAN KINERJA SEISMIK STRUKTUR BANGUNAN ABC DENGAN VARIASI DIMENSI SHEAR WALL Jonathan, Yenny Untari Liucius, dan Hendy Wijaya	213-222
ANALISIS PERBANDINGAN BIAYA PILE CAP STRUKTUR LIFT GEDUNG LABORATORIUM BTKP JAKARTA UTARA METODE KONVENSIONAL DAN BIM Mikhael Stefanus Filemon Simatupang, Jessica Siregar, dan Galih Rio Prayogi	223-230
STUDI PERBANDINGAN NILAI <i>UNDRAINED SHEAR STRENGTH</i> TERHADAP NILAI <i>LIQUID LIMIT</i> TANAH LEMPUNG Sherlin Angelina dan Aniek Prihatiningsih	230-236

JMTS: Jurnal Mitra Teknik Sipil Vol. 8 No. 1, Februari 2025: Daftar Isi	EISSN 2622-545X
KAJIAN KARAKTERISTIK DAN KECEPATAN KONSOLIDASI PADA TANAH LAKUSTRIN BANDUNG Cornelius Georgeshua, Paulus Pramono Rahardjo, dan Asriwiyanti Desiani	237-252
ANALISIS INTERAKSI TANAH- <i>GEOFOAM</i> TERHADAP PARAMETER KUAT GESER TANAH Emmanuel Pangihutan Sitompul dan Asriwiyanti Desiani	253-262
PERBANDINGAN DAYA DUKUNG TIANG PANCANG BERDASARKAN DATA CPTE SEBELUM DAN SESUDAH VACUUM CONSOLIDATION PADA PROYEK X	263-272
Mikael Dylan Gunawan dan Ali Iskandar	
PERSENTASE KENAIKAN NILAI CBR TANAH LANAU HALIM YANG DIPERKUAT DENGAN LIMBAH C&D PADA BERBAGAI PROPORSI Bagus Yusuf Mahendra, Alfred Jonathan Susilo, dan Gregorius Sandjaja	273-280
ANALISIS PERUBAHAN NILAI CBR PADA TANAH LATERIT AKIBAT PENAMBAHAN GARAM Muhammad Raihan Suganda, Hendy Wijaya, dan Ali Iskandar	281-290
STUDI PENGARUH PERKUATAN TANAH MENGGUNAKAN GEOGRID TERHADAP STABILITAS LERENG Pradipa Agung Laksono dan Aniek Prihatiningsih	291-298
ANALISIS <i>CHANGE ORDER RATIO</i> PADA PROYEK KONSTRUKSI RUMAH TINGGAL STUDI KASUS DI DAERAH TANGGERANG <i>Rosani Surya Bataric dan Arianti Sutandi</i>	299-304
ANALISIS MEKANIK CAMPURAN TANAH LEMPUNG BERLANAU (MH-OH) DENGAN PASIR GUNA MENINGKATKAN KEKUATAN GESER TANAH Aniek Prihatiningsih, Hendy Wijaya, Christopher, Ralf Josh Hilliard Valentino	
PERSEPSI PENGUNA LAYANAN BISKITA TRANS DEPOK TERHADAP ASPEK LAYANAN BUS DAN HALTE	313-322
Zahra Mahdiyyah, Yenny Untari Liucius, dan Hokbyan R.S. Angkat	
PERBANDINGAN EFISIENSI TRANSPORTASI DI DAERAH MAHAKAM ULU	323-334
Florensia Moni Anapah dan Leksmono Suryo Putranto	
ANALISIS METODE <i>IMPORTANCE PERFORMANCE ANALYSIS</i> PADA FASILITAS HALTE TRANSJAKARTA KORIDOR 3 Adrian Nobel Gilland, Najid, Hokbyan R.S. Angkat	335-346

ANALISIS MEKANIK CAMPURAN TANAH LEMPUNG BERLANAU (MH-OH) DENGAN PASIR GUNA MENINGKATKAN KEKUATAN GESER TANAH

Aniek Prihatiningsih^{1*}, Hendy Wijaya¹, Christopher¹, Ralf Josh Hilliard Valentino¹

¹Program Studi Sarjana Teknik Sipil, Universitas Tarumanagara, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia *aniekp@ft.untar.ac.id

Masuk: 08-10-2024, revisi: 25-10-2024, diterima untuk diterbitkan: 10-02-2025

ABSTRACT

Silty clay (MH-OH) exhibits high plasticity, low bearing capacity, and significant instability, often posing challenges in construction projects. To address these issues, this study investigates the effect of mixing silty clay with sand to improve the soil's shear strength. The research involves compaction tests, triaxial tests, and unconfined compression tests (UCT) to evaluate the impact of sand addition with varying percentages of 8%, 10%, and 12% by the weight of the clay. The compaction test results show that adding sand reduces the optimum water content from 34.8% to 32% and increases the dry density from 1.311 g/cm³ to 1.342 g/cm³. Triaxial tests indicate that increasing the sand content raises the soil's shear angle from 13.97° to 34.27°, while cohesion decreases from 2.57 kg/cm² to 1.94 kg/cm². In the UCT, cohesion also declines with increasing sand content, from 3.37 kg/cm² to 2.64 kg/cm². This study demonstrates that adding sand to silty clay effectively enhances soil shear strength, making it more stable and suitable for safer construction applications.

Keywords: Silty clay; shear strength; compaction; triaxial test; unconfined compression test; soil stabilization

ABSTRAK

Tanah lempung berlumpur (MH-OH) memiliki karakteristik plastisitas tinggi, daya dukung yang rendah, dan ketidakstabilan yang signifikan, sehingga sering menjadi tantangan dalam proyek konstruksi. Untuk mengatasi hal ini, dilakukan penelitian mengenai pencampuran tanah lempung berlumpur dengan pasir guna meningkatkan kekuatan geser tanah. Penelitian ini menggunakan uji kompaksi, triaksial, dan uji tekan bebas (*Unconfined Compression Test* atau UCT) untuk mengukur pengaruh penambahan pasir dengan variasi persentase 8%, 10%, dan 12% terhadap berat tanah. Hasil uji kompaksi menunjukkan bahwa penambahan pasir menurunkan kadar air optimum dari 34,8% menjadi 32% dan meningkatkan kepadatan kering dari 1,311 g/cm³ menjadi 1,342 g/cm³. Uji triaksial mengindikasikan bahwa peningkatan campuran pasir meningkatkan sudut geser tanah dari 13,97° menjadi 34,27°, sedangkan kohesi menurun dari 2,57 kg/cm² menjadi 1,94 kg/cm². Pada uji tekan bebas, kohesi juga mengalami penurunan seiring bertambahnya pasir, yaitu dari 3,37 kg/cm² menjadi 2,64 kg/cm². Penelitian ini menunjukkan bahwa penambahan pasir pada tanah lempung berlumpur secara efektif dapat meningkatkan kekuatan geser tanah, menjadikannya lebih stabil dan cocok untuk aplikasi konstruksi yang lebih aman.

Kata kunci: Tanah lempung berlumpur; kekuatan geser; kompaksi, triaksial; uji tekan bebas; stabilisasi tanah

PENDAHULUAN

Tanah lempung berlanau (MH-OH) dikenal memiliki karakteristik plastisitas tinggi, kekuatan geser rendah, dan perubahan volume yang signifikan ketika terjadi perubahan kadar air. Karakteristik ini sering menimbulkan permasalahan dalam proyek konstruksi, seperti penurunan daya dukung tanah, ketidakstabilan fondasi, dan potensi longsor pada lereng. Penggunaan tanah lempung berlanau dalam aplikasi konstruksi membutuhkan teknik stabilisasi untuk meningkatkan kekuatan geser dan mengurangi plastisitas, sehingga dapat mendukung beban secara lebih efektif.

Salah satu metode yang banyak digunakan untuk memperbaiki sifat mekanik tanah adalah dengan menambahkan material granular, seperti pasir, ke dalam campuran tanah. Penambahan pasir diharapkan dapat mengurangi plastisitas tanah lempung serta meningkatkan sudut geser dalam dan daya dukung tanah. Meski demikian, penambahan pasir harus dilakukan dengan proporsi yang tepat untuk menghindari penurunan kohesi tanah, yang justru dapat menurunkan kekuatan geser total campuran. Seperti pada percobaan Kim et al. (2018), menggabungkan pasir dengan beberapa persentase lempung menghasilkan nilai sudut geser yang variatif. Untuk itu, perlu uji coba untuk mendapatkan proposi yang sesuai.

Analisis Mekanik Campuran Tanah Lempung Berlanau (MH-OH) dengan Pasir Guna Meningkatkan Kekuatan Geser Tanah

Penelitian ini mengevaluasi pengaruh penambahan pasir terhadap kekuatan geser tanah lempung berlanau melalui dua jenis pengujian, yaitu uji desak bebas (*unconfined compression test*, UCT) dan uji triaksial. Uji desak bebas dilakukan untuk mengevaluasi kekuatan tanah di bawah beban aksial tanpa tekanan lateral, yang merepresentasikan kondisi tanah dalam keadaan bebas terkekang. Sementara itu, uji triaksial digunakan untuk mengevaluasi kekuatan tanah di bawah tekanan tiga dimensi, yang lebih mendekati kondisi lapangan. Kedua pengujian ini memberikan wawasan penting tentang perilaku mekanik campuran tanah-pasir di bawah beban yang berbeda.

Dalam penelitian ini, tanah lempung berlanau dicampur dengan variasi proporsi pasir sebesar 0%, 8%, 10%, dan 12%. Variasi ini dipilih untuk menentukan proporsi optimal yang dapat meningkatkan kekuatan geser tanpa mengurangi kohesi tanah secara signifikan. Hasil dari pengujian diharapkan dapat memberikan kontribusi pada perbaikan desain dan stabilisasi tanah di berbagai proyek infrastruktur, khususnya pada fondasi dangkal, stabilisasi lereng, dan tanah dasar untuk jalan raya.

Penelitian ini sangat penting terutama di daerah dengan kondisi tanah yang kurang stabil, seperti di Indonesia. Banyak proyek konstruksi di perkotaan yang harus memanfaatkan tanah lempung dengan karakteristik yang kurang ideal. Oleh karena itu, teknik stabilisasi yang efektif seperti pencampuran pasir perlu diteliti lebih lanjut agar dapat meningkatkan kestabilan tanah dan daya dukung fondasi tanpa memerlukan penggantian tanah yang signifikan.

Tanah lempung dikenal karena memiliki kohesi tinggi namun sudut geser dalam yang rendah, yang membuatnya cenderung tidak stabil, terutama di bawah perubahan kadar air. Holtz dan Kovacs (1981) menjelaskan bahwa salah satu pendekatan dalam meningkatkan stabilitas tanah lempung adalah dengan mencampurkannya dengan material granular seperti pasir untuk mengurangi plastisitas dan meningkatkan daya dukung.

Bowles (1996) menyatakan bahwa penambahan material granular seperti pasir dapat meningkatkan sudut geser dalam (φ) dan menurunkan batas cair tanah, yang dapat meningkatkan stabilitas. Pencampuran ini juga bertujuan untuk mengurangi potensi ekspansi tanah yang dihasilkan oleh perubahan kadar air.

Das (2010) menyatakan uji triaksial umumnya digunakan untuk menentukan parameter kuat geser tahan. Uji triaksial merupakan salah satu metode paling efektif dalam mengukur kekuatan tanah di bawah kondisi tekanan tiga dimensi, seperti yang dihadapi dalam kondisi lapangan. Terzaghi et al. (1967) menekankan pentingnya uji triaksial karena memberikan gambaran yang lebih realistis tentang perilaku tanah di bawah tekanan sebenarnya.

Tanah lempung berlanau (MH-OH) umumnya memiliki sifat plastisitas tinggi, perubahan volume yang besar akibat perubahan kadar air, serta kekuatan geser yang rendah, sehingga sering menimbulkan masalah dalam aplikasi konstruksi, terutama dalam proyek-proyek fondasi dan stabilisasi lereng. Salah satu metode yang dapat digunakan untuk mengatasi kelemahan ini adalah dengan mencampurkan material granular seperti pasir. Namun, proporsi pencampuran yang optimal belum diketahui secara pasti, karena penambahan pasir yang berlebihan dapat mengurangi kohesi tanah, yang justru menurunkan kekuatan total tanah.

Berdasarkan permasalahan tersebut, dilakukan penelitian ini untuk menjawab pertanyaan-pertanyaan berikut:

- 1. Sejauh mana pencampuran pasir dengan tanah lempung berlanau (MH-OH) dapat meningkatkan kekuatan geser tanah?
- 2. Berapa proporsi optimal pasir yang dapat meningkatkan kekuatan geser tanpa mengurangi kohesi tanah secara signifikan?
- 3. Bagaimana pengaruh penambahan pasir terhadap plastisitas tanah lempung berlanau?
- 4. Apakah hasil uji triaksial dan uji geser langsung memberikan hasil yang konsisten dalam mengevaluasi kekuatan campuran tanah-pasir?

METODE PENELITIAN

Tanah yang digunakan dalam penelitian ini merupakan tanah lempung berlanau (MH-OH) yang diambil dari lokasi Rangkas Bitung dengan permasalahan stabilitas. Pasir yang digunakan adalah pasir alami yang telah melalui analisis penyaringan untuk memastikan distribusi ukuran butirnya homogen.

Campuran tanah dan pasir disiapkan dalam empat variasi proporsi pasir, yaitu 0%, 8%, 10%, dan 12%. Campuran diproses secara homogen untuk memastikan distribusi pasir yang merata di dalam tanah. Setiap campuran kemudian diuji menggunakan direct shear test dan triaxial test untuk mendapatkan parameter kekuatan geser.

Uji laboratorium

1. Uji kompaksi modified: Uji kompaksi modified untuk mendaoatkan Kepadatan kering maksimum dan kadar air optimum.

Vol. 8, No. 1, Februari 2025; hlm 305-312

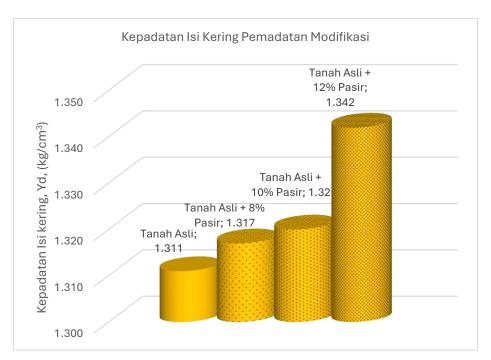
- 2. Uji desak bebas/unconfined compression test (UCT): Uji desak bebas dilakukan untuk mengukur kuat tekan bebas (qu) dan kohesi dan kohesi (c) dari setiap variasi campuran tanah-pasir.
- 3. *Triaxial compression test*: Uji triaksial dilakukan dalam kondisi drained untuk mengevaluasi kekuatan tanah di bawah tekanan tiga dimensi. Tegangan deviator puncak dicatat untuk setiap variasi campuran.
- 4. Uji Atterberg: Batas cair (LL) dan batas plastis (PL) diukur untuk setiap variasi campuran guna mengevaluasi perubahan plastisitas.

HASIL DAN PEMBAHASAN

Hasil uji indeks properties tanah penelitian seperti pada Tabel 1.

Tabel 1. Hasil uji index properties tanah penelitian

Uji Laboratorium	Tanah Asli	Tanah Asli + 8% Pasir	Tanah Asli + 10% Pasir	Tanah Asli + 12% Pasir
SPECIFIC GRAVITY (G _s)	2,67	2,68	2,68	2,69
ATTERBERG (batas plastis)				
Batas Cair (WL)	91,98	75,99	69,54	66,36
Batas Plastis (WP)	65,74	52,02	48,01	50,70
Indeks Plastisitas (IP)	26,24	23,98	21,53	15,67
Klasifikasi Tanah	OH & MH	OH & MH	OH & MH	OH & MH
GRAIN SIZE				
Gravel	0,42%	0,13%	0,15%	0,17%
Pasir	7,41%	15,49%	18,01%	20,43%
Lanau	82,97%	80,18%	74,62%	75,64%
Lempung	9,41%	4,33%	7,37%	3,92%
MODIFIED COMPACTION				
Kadar air optimum (wopt) (%) Kepadatan kering maksimum (γdmaks) (kg/cm³)	34,80 1,311	33,50 1,317	33,10 1,320	32,00 1,342


Uji kompaksi modified

Dari hasil uji kompaksi *modified* didapat hasil kepadatan maksimum tertinggi terjadi pada campuran pasir 12% sebesar 1,342 kg/cm³, seperti terlihat pada Gambar 1. Kepadatan akan meningkat dengan penambanan pasir. Sedangkan kadar air optikum akan menurun seiring dengan penambanah pasir. Pada pasir campuran 12% kadar air optimum sebesar 32,00%.

Hasil penelitian dijelaskan secara lengkap sesuai dengan metode yang digunakan. Pembahasan mendalam dilakukan berdasarkan data hasil survei, pengujian, atau metode pengambilan data lainnya. Pembahasan harus mengaitkan konten dengan teori yang telah dikemukan sebelumnya. Dalam hal data hasil yang ditampilkan banyak, Hasil dan pembahasan/analisis dapat dicantumkan pada bagian yang berbeda.

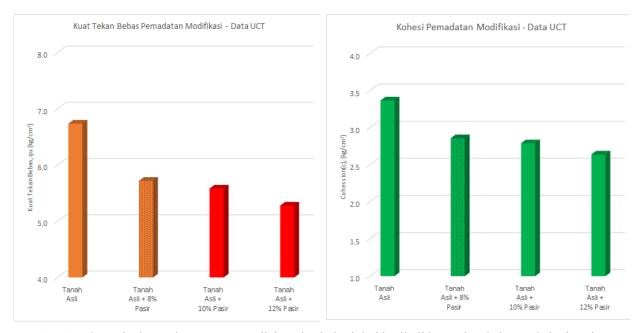
Uji kuat tekan bebas

Hasil uji kuat tekan bebas mendapatkan kuat tekan bebas sebesar (qu) dan kohesi, penurunan kuat tekanterjadi dengan penambahan pasir. Tanah asli tanpa pencampuran (0% pasir) memiliki kuat tekan bebas sebesar (qu) sebesar 6.732 kg/cm² dan kohesi 3.366 kg/cm². Penambahan 8% pasir menurunkan kuat tekan bebas menjadi (qu) 5.716 kg/cm² dan kohesi 2.858 kg/cm². Penurunan terus berlanjut hingga pencampuran 12% pasir, seperti terlihat pada Tabel 2. Gambar 2 menunjukkan peningkatan dan penurunan hasil uji kuat tekan bebas campuran pasir.

Gambar 1. Perbandingan peningkatan kepadatan kering hasil dari uji pemadatan modified

Tabel 2. Hasil uji kuat tekan bebas tanah penelitian

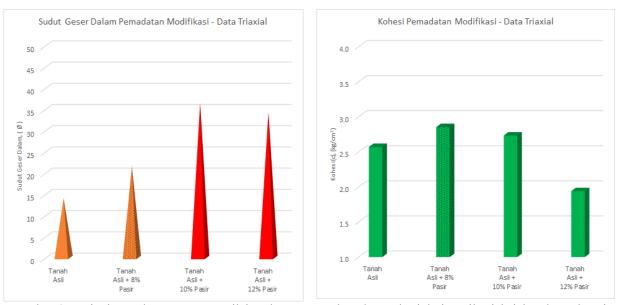
Proporsi Pasir	Kuat tekan bebas (qu), kg/cm ²	Kohesi C, kg/cm ²
0% (tanah asli)	6,732	3,366
8%	5,716	2,858
10%	5,578	2,789
12%	5,276	2,638


Gambar 2. Perbandingan penurunan kadar air hasil dari hasil uji pemadatan modified

Uji triaksial

Hasil uji triaksial menunjukkan tren yang sama dengan uji desak bebas. Pada tanah asli tanpa campuran pasir, mendapatkan nilai sudut geser dalam (φ) sebesar 13,969° dan kohesi (C) sebesar 2,569 kg/cm². Pada pencampuran 8% pasir, terjadi peningkatan sudut geser dalam (φ) sebesar 21,587° dan kohesi (C) sebesar 2,853 kg/cm². Sudut geser dalam (φ) tertinggi dicapai pada campuran 10% pasir, dengan sudut geser dalam (φ) sebesar 36,501° dan kohesi (C) sebesar 2,733 kg/cm². Namun, pada campuran 12%, sudut geser dalam (φ) mengalami penurunan menjadi 34,268° dan kohesi (C) sebesar 1,939 kg/cm². Menunjukkan penambahan pasir yang berlebihan mulai mengurangi kekuatan tanah. Hal yang serupa juga terjadi pada percobaan yang dilakukan oleh Miftah et al. (2020), namun dengan material uji yang sedikit berbeda, yakni campuran lempung-pasir diberi tambahan tanah butir halus dengan nilai sudut geser tertinggi pada campuran 10%, kemudian turun seriring bertambahnya tanah butir halus. Seperti terlihat pada Tabel 3. Gambar 3-4 menunjukkan peningkatan dan penurunan hasil uji kuat tekan bebas campuran pasir.

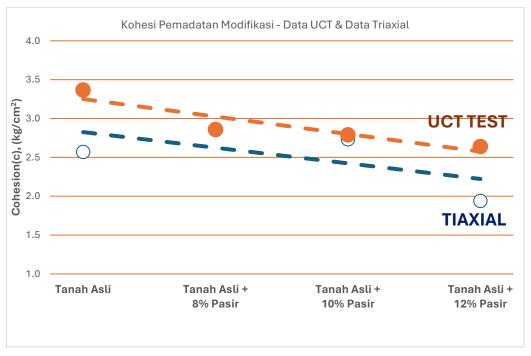
Proporsi Pasir	Sudut Geser Dalam (φ) (derajat)	Kohesi (c), kg/cm ²
0% (tanah asli)	13,969	2,569
8%	21,587	2,853
10%	36,501	2,733
12%	34.268	1.939


Tabel 3. Hasil uji triaksial tanah penelitian

Gambar 3. Peningkatan dan penurunan nilai qu dan kohesi dari hasil uji kuat tekan bebas pada berbagai penambahan pasir

Pengaruh terhadap plastisitas

Uji Atterberg menunjukkan penurunan plastisitas dengan penambahan pasir. Hal yang serupa terjadi pada penelitian yang sebelumnya telah dilakukan Al Rawi et al. (2018), menambahkan pasir ke tanah yang kohesif membuat batas cair dan batas plastis menurun. Batas cair (LL) pada tanah asli adalah 91,98%, yang berkurang menjadi 69,54% pada campuran 10% pasir. Demikian pula, batas plastis (PL) turun dari 48,01% pada tanah asli menjadi 65,74% pada campuran dengan 10% pasir. Penurunan plastisitas ini menunjukkan bahwa campuran pasir membuat tanah lebih stabil dan lebih tahan terhadap perubahan kadar air (Tabel 4).



Gambar 4. Peningkatan dan Penurunan Nilai Sudut Geser Dalam dan Kohesi dari Hasil Triaksial Pada Berbagai Penambahan Pasir

		•
Proporsi Pasir	Batas Cair (LL)	Batas Plastis (PL)
0% (tanah asli)	91,98	65,74%
8%	75,99	52,02%
10%	69,54	48,01%
12%	66.36	50 70%

Tabel 4. Hasil uji atterberg limit tanah penelitian

Seperti pada pengujian yang dilakukan oleh Al Badran dan Al Ameri (2020), penambahan pasir membuat nilai kohesi menurun. Dari hasil penelitian ini juga terjadi penurunan nilai kohesi berdasarkan hasil uji UCT dan Triaksial, dari spesimen tanah asli sampai spesimen tanah asli dengan komposisi penambahan 12% pasir, yang ditunjukkan pada Gambar 5.

Gambar 5. Perbandingan penurunan kohesi untuk uji UCT maupun triaksial

Vol. 8, No. 1, Februari 2025: hlm 305-312

KESIMPULAN

- 1. Pada pengujian pemadatan modifikasi, dengan semakin banyak menambah pasir maka, akan mengurangi persentase kadar air optimum dan meningkatkan kepadatan isi kering pada tanah yang dipadatkan.
- 2. Pada pengujian uji desak bebas maupun triaxial, semakin banyak menambah pasir akan semakin mengurangi nilai kohesi (c) pada tanah yang dipadatkan.
- 3. Pada pengujian triaxial, dengan semakin banyak menambah pasir, maka akan semakin meningkatkan sudut geser dalam (φ) tanah yang dipadatkan.
- 4. Nilai plastisitas akan menurun seiring bertambahnya pasir, terutama pada pasir dengan penambahan 10%. Namun perlu ditinjau kembali untuk batas bawah optimum, dikarenakan terjadi kenaikan kembali pada penambahan 12%.
- 5. Dari hasil penelitian terlihat bahwa penambahan pasir akan optimum pada 10%. Hasil uji pada penambahan pasir 10% didapat sudut geser dalam sebesar 36,501°, Kepadatan maksimum kering sebesar 2,733 kg/cm³, dan nilai plastisitas sebesar 48,01%.

DAFTAR PUSTAKA

Al Badran, Y. M., & Al Ameri, A. F. (2020). Effect of adding sand on clayey soil shear strength. *IOP Conference Series: Materials Science and Engineering*, 870(1), 012079. DOI 10.1088/1757-899X/870/1/012079

Al Rawi, O. S., Assaf, M. N., & Hussein, N. M. (2018). Effect of sand additives on the engineering properties of fine grained soils. *ARPN Journal of Engineering and Applied Sciences*, 13(9), 3197-3206.

Bowles, J. E. (1996). Foundation analysis and design. McGraw-Hill.

Das, B. M. (2010). Principles of geotechnical engineering. Cengage Learning.

Hardiyatmo, H. C. (2002). Mekanika tanah 1. Gadjah Mada University Press.

Holtz, R. D., & Kovacs, W. D. (1981). An introduction to geotechnical engineering. Prentice Hall.

Kim, D., Nam, B. H., & Youn, H. (2018). Effect of clay content on the shear strength of clay-sand mixture. *International Journal of Geo-Engineering*, 9, 1-12. https://doi.org/10.1186/s40703-018-0087-x

Miftah, A., Garoushi, A. H., & Bilsel, H. (2020). Effects of fine content on undrained shear response of sand-clay mixture. *International Journal of Geosynthetics and Ground Engineering*, 6, 1-7. https://doi.org/10.1007/s40891-020-0193-7

Terzaghi, K., Peck, R. B., & Mesri, G. (1967). Soil mechanics in engineering practice. John Wiley & Sons.

Prihatiningsih et al. (2025)

Analisis Mekanik Campuran Tanah Lempung Berlanau (MH-OH) dengan Pasir Guna Meningkatkan Kekuatan Geser Tanah