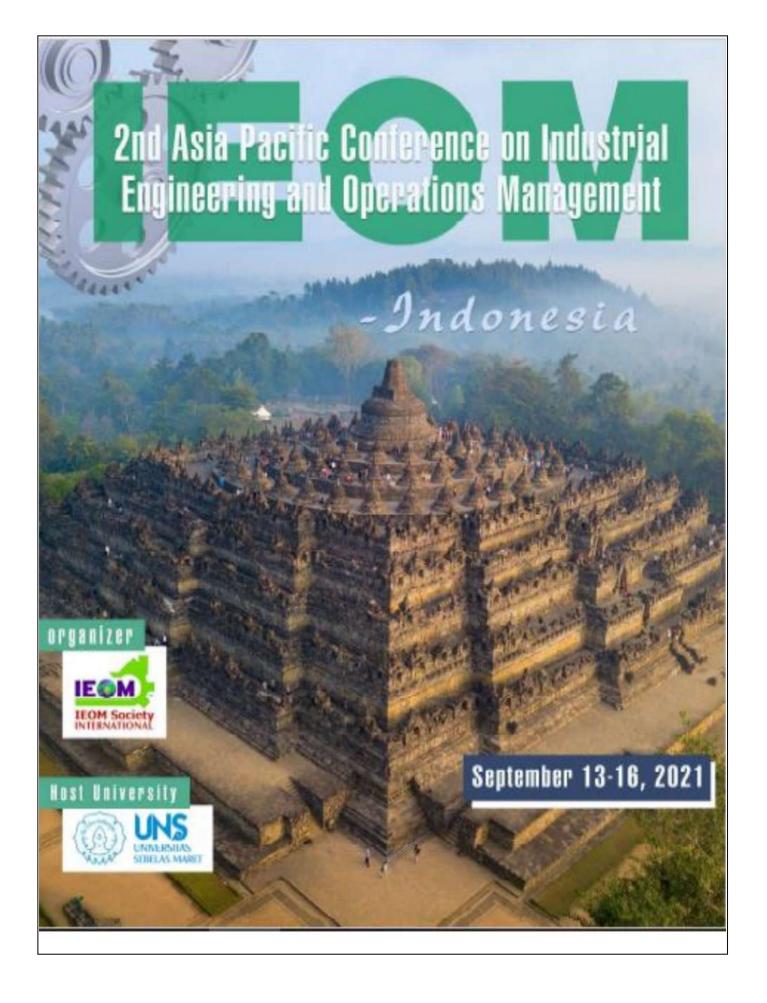
Flowshop Production Scheduling using CDS, Tabu Search, and Genetic Algorithm (Case Studies: CV. Mega Abadi)

by Lina Gozali


Submission date: 08-May-2022 11:56PM (UTC+0700)

Submission ID: 1831222249

File name: 72._Vania_Surakarta.pdf (2.3M)

Word count: 6789

Character count: 35549

Sponsors and Partners

* CATME

PURDUE

Organizer

IEOM Society

"Achieving and Sustaining Operational Excellence"

www.ieomsociety.org

Industrial Engineering and Operations Management Society International

IEOM Society International, 21415 Civic Center Dr., Suite 217, Southfield, Michigan 48076, USA.

Phone: 1-248-450-5660, Email: Info@leomsociety.org

Day 1 - September 13 (Monday)

08:00 - 9:45 am Technical Presentations - Zoom Meeting Rooms 1-8

Conference Program

```
10:00 - 11:45 am Technical Presentations - Zoom Meeting Rooms 1-8
12:00 - 1:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
02:00 - 3:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
04:00 - 5:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
Day 2 - September 14 (Tuesday)
8:00 am - Officially Opening the Conference from UNS Vice Rector - Zoom Meeting Room 1
8:20 am - Keynote Speaker I: Dr. Jessika E. Trancik, Professor, Institute for Data, Systems and Society (IDSS), Massachusetts Institute of Technology (Opening Keynote) - Zoom Meeting Room 1
9:00 am - Keynote Speaker II: Dr. Jay Lee, Vice Chairman and Board Member of Foxcorin Technology Group, Member of World Economic
Forum Global Future Council on Advanced Manufacturing and Production - Zoom Room 1
9.40 am - Keynote Speaker III: Prof. George G. Q. Huang, Chair Professor and Head, Department of Industrial and Manufacturing, Systems 
Engineering, The University of Hong Kong - Zoom Meeting Room 1
10:20 am Break
10:40 am - Keynote Speaker IV: Dr. Robert de Souza, The Executive Director of the The Logistics Institute - Asia Pacific (TLI - Asia
Pacific), National University of Singapore, Singapore City, Singapore - Zoom Meeting Room
11:20 am Keynote Speaker V. Harry Kasuma (Kiwl) Aliwarga, CEO and Co-Owner, UMS Myanmar - Zoom Meeting Room 1
12:00 pm - LUNCH BREAK
1:00 pm - 2:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
2:45 pm - Break
3:00 pm - 4:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
4:45 pm - Breek
5:00 pm - 6:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
Day 3 - September 15 (Wednesday)
                                                     om Meeting Rooms 1
8:00 am - Conference Co-Chair Remarks - 2
8:20 am - Keynote Speaker VI: Dr. Ahad All, Associate Professor and Director of Industrial Engineering, Lawrence Technological University,
Michigan, USA - Zoom Meeting Room
9:00 am – Keynote Speaker VII: Prof. Dr. Eng. Kolchi Murata, College of Industrial Technology, Nihon University, Japan – Zoom Room 1
9:40 am – Keynote Speaker VIII: Dr. Rajesh Piplani, Associate Professor, The school of Mechanical and Aerospace Engineering, Systems and Engineering Management division, Nanyang Technological University, Singapore – Zoom Meeting Room 1
10:20 am Break
10:40 am - Keynote Speaker IX: Dr. Ir. Bertha Maya Sopha, Past Director of Industrial Engineering Undergraduate Program, Faculty of
Engineering, Universities Gadjah Made (UGM), Yogyakarta, Indonesia and President – Indonesian Association of Industrial Engineering 
Higher Education Institution (BKSTI) – Zoom Meeting Room 1
11:20 am Keynote Speaker X: Prof. Anicia Peters, Pro-Vice Chancelor: Research, Innovation & Development, University of Namibia
12:00 pm - LUNCH BREAK
1:00 pm - 2:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
3:00 pm - 4:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
4.45 pm - Break
5:00 pm - 6:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
Day 4 - September 16 (Thursday)
8:00 am - Conference Co-Chair Remarks - Zoom Meeting Rooms 1
8:20 am - Keynote Speaker XI: Tom Gaasenbeek, Founder and CEO, Nexas Networks Inc., Hamilton, Ontario, Canada - Zoom Meeting
9:00 am - Keynote Speaker XII: Adil Datat, President & CEO, Pinnacie Process Solutions, Intl, Austin, Texas, USA - Zoom Meeting Rooms 1 9:40 am - Keynote Speaker XIII: Dr. John Blakemore, Adjunct Professor at University of Newcastle, Blakemore Consulting International,
Sydney, Australia - Zoom Meeting Room 1
10:20 am Break
10:40 am – Keynote Speaker XV: Dr. Basuki Rahmad, ST, MT, CEO, PT. Transforms Engineering & Solutions, Bandung, Jeva, Indonesia
11:20 am Keynote Speaker XV: Dr. Zain Tahboub, President, MENA College of Management (MCM), Dubai, UAE – Zoom Meeting Room 1
12:00 pm - LUNCH BREAK
1:00 pm - 2:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
2:45 pm - Break
3:00 pm - 4:45 pm - Technical Presentations - Zoom Meeting Rooms 1-8
4:45 pm - Bresi
5:00 pm - 6:45 pm Technical Presentations - Zoom Meeting Rooms 1-8
8:00 - 10:00 pm, September 16: Conference Awards Ceremony and Announcing Competition Winners
```

Rejection, INDIA

Digital twin in supply chain management

6:00 pm - 6:20 pm, Thursday, September 16

Engr. Numan Arshad
Certified PMP, RMP, ACP PMI-USA
Certified PSP-AACEI
Senior Training Consultant and Visiting Lecturer
Riphah International University
Islamabed, Palistan

5:00 - 6:30 pm, THURSDAY

Operations Research

Room !

Session Chair. Etic Wibisono, Department of Industrial Engineering, Faculty of Engineering, University of Surabaya, Surabaya, Indonesia

ID 006 Flowshop Production Scheduling Using Cds, Tabu Search And Genetic Algorithm (Case Studies: Cv. Mega Abadi) Line Gozali, Varia Eliyanti, Lamto Widodo, and Frans Just/ Daywin, Industrial Engineering, Universitas Tarumanagana, Indonesia Agustirus Purna Irawan, Mechanical Engineering, Universitas Tarumanagana, Indonesia Harto Tarujaya, Industrial Engineering, Universitas Tarumanagana, Indonesia
Sit Rohana Nasution, Industrial Engineering, UPN Veteran, Jaksafa, Indonesia

ID 099 Simulated Annealing Algorithm for Vehicle Routing Problem with Simultaneous Pick Up and Delivery: A Case Study of Liquid Petroleum Gas Distribution

Fatikhetuz Zahra, Prima Arinda Nurul Islami and Nur Layli Rachmawati, Department of Logistics Engineering, Universitas Pertamina, DKI Jakarta, 12220, Indonesia

A.A.N. Perwitz Red, Department of Industrial Engineering, BINUS Graduate Program – Master of Industrial Engineering, Universities Bina Nusentara, DKJ Jakarta, 11480, Indonesia

Reny Nadifiatin, Department of Information System, Institut Teknologi Sepuluh, Nopember, Surabaya, 60111, Indonesia Agus Supranarthe, Department of Electrical Engineering, Universitas Pendidikan Nasional, Bali, Indonesia

ID 113 Modification of Non-delay Algorithm to Minimize Makespan

Nur Ezha Vidawati, Management Trainee Supply Chain, PT. Nestle, Indonesia

Puryani and Apriani Scepardi, Department of Industrial Engineering, Faculty of Industrial Engineering, Universitas Pembangunan Nasional Veteran, Yogyakarta, Indonesia

ID 284 Effect of Social Support on Elderly Welfare Using Structural Equation Modelling (SEM)

Restu Aji Nur Kahfi BP, Industrial Engineering Postgraduate Program, Universitas Islam Indonesia, Yogyakarta, Indonesia Hali Pumomo, Industrial Engineering Program, Universitas Islam Indonesia, Yogyakarta, Indonesia

Ayudyah Eka Apsari, Industrial Engineering Program, Universitas Islam Batik Surakarta, Surakarta, Indonesia ID 702 Heuristic Algorithm to Minimize Maximum Lateness for Job-shop Scheduling Problem in Automotive Industry

Docki Saraswati, Debbie Kemala Sari and Nesya Dwi Permata, Department of Industrial Engineering, Universitas Trisakti, Jakarta, Indonesia

ID 274 Comparison of crossover operators in genetic algorithm for vehicle routing problems

Eric Wibisono, Iris Martin, and Dine Natalia Prayogo, Department of Industrial Engineering, Faculty of Engineering, University of Surebaya, Surebaya, Indonesia

5:00 - 6:30 pm. THURSDAY

Modeling and Simulation

Room 3

Session Chair: Muhammad Nadzmi Muhammad Idian, Universiti Telonologi MARA (UTM), 40450 Shah Alam, Selangor, Malaysia

ID 075 Sales Prediction of Multi-Item Time Series Using Autoregresive Integrated Moving Average and Long Short-Term Memory on Perishable Products

Abdullah 'Azzam, Shelly Elvine Salsabile, Suci Mirande, Department of Industrial Engineering, Islamic University of Indonesia, Kaliurang Street KM 14,5 Yogyakarta

ID 417 Age-Dependent Inventory Routing Problem Model for Medical Waste Collection

Ridho Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

ID 697 Techno-Economic Feasibility Analysis of Agricultural Drone Business in Indonesia

Nide An Khofiyah, Master Program of Industrial Engineering Department, Faculty of Engineering, Universities Sebelas Manet, Sunskarta, Indonesia Muhammad Hisjam, University Centre of Excellence for Electrical Energy Storage Technology, Universities Sebelas Manet, Sunskarta, Indonesia Welnyud Sutopo, Research Group Industrial Engineering and Techno-Economic, Department of Industrial Engineering, Faculty of Engineering Universities Sebelas Manet, Sunskarta, Lit. Sutami, 36 A, Sunskarta, Indonesia

ID 416 Eveloped SERVQUAL Model in Measuring Customer Satisfaction for Ferry Service in Langkawi Muhammad Nadzmi Muhammad Idlan, Graduate Research Assistant, Maleysia Institute of Transport (MTRANS), Universit Teknologi MARA.

Muhammad Nadzmi Muhammad Idlan, Graduate Research Assistant, Maleysia Institute of Transport (MITRANS), Universiti Teknologi MARA (LITM), 40450 Shah Alam, Salangor, Maleysia

Hafina Suzana Jeafer, Associate Professor, Department of Technology and Supply Chain Management, Faculty of Business and Management Universit Teknologi Mara, Selangor Branch, Puncak Alam Campus, 42300 Bender Puncak Alam, Selangor, Malaysia

The Second Asia Pacific Conference on **Industrial Engineering and Operations Management**

Surakarta, Indonesia, September 13-16, 2021, Host: Universitas Sebelas Maret (UNS)

Certificate of Presenter

This is to certify that

Lina Gozali, ST., MM., Ph.D. Universitas Tarumanagara

Presenter of the 2nd APIEOM Conference Virtually. The event includes keynote speeches, technical presentations, global engineering education, global supply chain & logistics, industry solutions, Industry 4.0, panels and technical sessions.

ice Dean for Human Resources, Finance, and Logistics, Faculty of Engineering Universitas Sebelas Maret (UNS), Indonesia President, IEOM Indonesia Chapter

Donal M. Re

Professor Donald M. Reimer Conference Co-Chair Director of Membership and Cha 9 rs IEOM Society and President, The Small Business Strategy Group, Michigan Adjunct Professor at Lawrence Tech Southfield, Michigan, USA

Dr. Ahad Ali

Associate Professor Director of Industrial Engineering Program Lawrence Technological University Southfield, Michigan, USA Executive Director, IEOM Society

Sponsors and Partners

IEOM Society International, 21415 Civic Center Dr., Suite # 217, Southfield, Michigan 48076, USA, www.ieomsociety.org

Flowshop Production Scheduling using CDS, Tabu Search, and Genetic Algorithm (Case Studies: CV. Mega Abadi)

Lina Gozali, Vania Eliyanti, Lamto Widodo, Frans Jusuf Daywin, Agustinus Puria Irawan, Harto Tanujaya

Industrial Engineering Department
Universitas Tarumanagara
Jakarta, Indonesia 11440
linag@ft.untar.ac.id

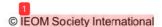
Siti Rohana Nasution

Industrial Engineering Department UPN Veteran, Jakarta Indonesia

Abstract

CV. Mega Abadi is a company in the manufacturing industry that produces paints. One of the superior products is epoxy paint. In fulfilling the customer's needs, the company is used to make to stock strategy, where the products that have been produced will be stored, and the customer's needs will be taken from the warehouse. The production pattern in this company is flowshop, where the jobs have the same production sequence. The marketing department has done the production schedule based on the product demand forecast, and then it will be sorted from the highest to the lowest demand forecast. The purpose of this research is to give a machine scheduling design to minimize makespan. The heuristic method used is Cambell, Dudek, and Smith (CDS) Algorithm, and the meta-heuristic methods used to obtain the most optimal result are Tabu Search Algorithm and Genetic Algorithm. After calculating the company's actual scheduling that begins with the forecast of the production amount with the decomposition method, its scheduling sequence is obtained. It can be known that the company's makespan is 334,68 minutes and flowtime 286,53 minutes. The results of data processing show that Tabu Search Algorithm produces the most optimal value with the production sequence 6018 Epoxy TC Yellow Green - 7001 Epoxy TC Light Grey - 1003 Epoxy TC Banana Yellow -9017 Epoxy TC Black - 9016 Epoxy TC Snow White with makespan 313,13 minutes and flowtime 288,61 minutes, and the result for the efficiency index is 1,068 and 7,61% of relative error. This research aims to create a production scheduling application/software that can help arrange the production schedule.

Keywords


Production Scheduling, Flowshop, Campbell Dudek and Smith (CDS) Algorithm, Tabu Search Algorithm, Genetic Algorithm, Decomposition Forecasting

1 Introduction

meduling is one of the most critical things in the manufacturing system. Scheduling can be determined as incating resources or existing machines the starry out a set of tasks within a certain period of time [Baker, 1974]. In general, production scheduling allocates available resources and machinery to complete all work with certain considerations, including minimizing the time completion (makespan) and meeting the due date.

Incorrect job sequences can lead to high total production time. It can also cause the number of products produced not to meet the target or customer demand, increase production costs and overtime costs, etc. Therefore, companies need to determine the proper and adequate production scheduling.

CV. Mega Abadi is a manufacturing industry that produces paint. The products such as Duco paint, alkyd paint, wall paint, and epoxy paint. The superior product namely epoxy paint. Epoxy paint is floor paint that consists of a combination of epoxy polymers and hardeners. In the production process activities, CV. Mega Abadi used some

tools and machines, both semi-automatic and automatic, such as weighers, small mixers, large mixers, press tools, etc. To meet customer demand, the company uses a make to stock strategy, where products produced will be stored, and the customer will be taken from inventory at the warehouse. The production pattern in this company is flowshop, where every job has the same production sequence.

Currently, the production scheduling from CV. Mega Abadi is done manually by the marketing department based on product demand forecasting, sorted from the highest to the lowest forecasting. In production activities, the employees often prioritize several jobs based on personal considerations. Difficulties often occur, especially when demand outside production increases. Production scheduling is currently unable to meet the number of products to meet the production targets. This problem indicates that scheduling at the company is not good. Based on the description above 31 is necessary to determine the most optimal production sequence in companies with flowshop production floors to minimize the 13 kespan using heuristic and meta-heuristic scheduling methods. The heuristic method used as an initial solution is Campbell, 13 lek, and Smith (CDS) Algorithm. The meta-heuristic method used to obtain the most optimal results or solutions is Tabu Search Algorithm and Genetic Algorithm.

5

2. Literature Review

2.1 Production Scheduling

Baker (1974) defines scheduling as allocating existing sources or machines to carry out a set of tasks within a certain period of tize. Meanwhile, according to Vollman (1997), scheduling is a work order arrangement plan and resource allocation, both time and facilities for each operation that must be completed (Kom, 2016). From this understanding, Baker and Vollman explain that scheduling is the process of managing sources or machines to complete a task or operation within a certain period of time. Good production scheduling can reduce the idle time (idle time) on production units and optimize goods in the process (work in process).

2.2 Flowshop Scheduling

Flow shop scheduling system is the scheduling of all jobs with the same process sequence, and each job goes to each machine at a certain time and is only processed once by each type of machine. Each job is processed sequentially, i.e., moving from one machine to the next. The flowshop's flow is divided into four categories: pure flow shop, where each job flows on the same production line, through all machines, and each job has one operation on each machine. General flow shop, where a job can consist of less than m operations, does not always start on the first machine or end on the last machine. Reentrant flow shop, where several machines can be passed more than once. Hybrid flow shop, where one machine in a machine set can be replaced by a group of machines (Morton & Pentico, 1993).

2.3 Campbell, Dudek, and Smith (CDS) Algorithm

CDS is a p2 duction scheduling method that can minimize makespan and gives near-optimal solutions (Ginting, 2009). The steps for scheduling with the CDS algorithm are:

- a. Determine the number of iterations, i.e., the number of machines -1.
- b. Take the first scheduling (K = 1). For all jobs, look for the minimum value of t * i, 2, which is the processing time on the first and second machines, where t * i, 1 = ti, 1 and t * i, 2 = ti, 2. Do it also for the next iteration.
- c. Do Johnson's rules. If the minimum time is obtained on the first machine (e.g., ti, 1), place the task at the beginning of the scheduling sequence. If the minimum time is obtained on the second machine (e.g., ti, 2), the task is placed in the scheduling sequence's final position.
- d. Remove these tasks from the list and arrange them in a scheduling sequence. If there are still jobs left, that means scheduling is complete.

15

2.4 Tabu Search Algorithm

Tabu Search is an optimization method based on local search. Tabu Search is a meta-heuristic method used to look for other possible solutions near-optimal (Glover, F. and M. Laguna, 1991). The search process moves from one solution to the next. The trick is to choose the best neighbourhood solution now that it is not classified as a forbidden solution (taboo). The steps in the taboo search method, such as: determining the initial solution using the heuristic method; determining the number of iteration calculations; calculating the value of an objective function with a neighbourhood switch; selecting the best objective function if the objective function is the same as the initial solution, then choose the other best objective function, if the values of the two objective functions are the same,

select one candidate; the newest candidate is used as the initial solution for the next iteration. Repeat some iterations that have been determined (Pinedo and Chao, 1999).

2.5 Genetic Algorithm

The genetic algorithm first introduced by Holland and De Jong in 1975 is a stochastic optimum value search technique based on the theory of evolution's basic principles. Genetic Algorithms can refer to all methods of finding neighbour solutions by simulating the process of natural evolution. The Genetic Algorithm method's scheduling procedure is as follows: initial population initialization; individual coding; determination of objective functions; determination of fitness value; selection; cross move or crossover; mutation (Alfandianto, Nugroho, & Setiafindari, 2017).

2.6 Decomposition Forecasting

The decomposition forecasting method is to identify three components or factors in a data series, such as the trend, seasonal, and cycle components. The decomposition method is used to predict periodic series of data that shows trends and seasonal influences. Illustrated as follows:

3. Methods

The research methodology is a basic principle in researching to be more coordinated, directed, and smooth. The research methodology contains the stages in research, which can be seen in Figure 1.

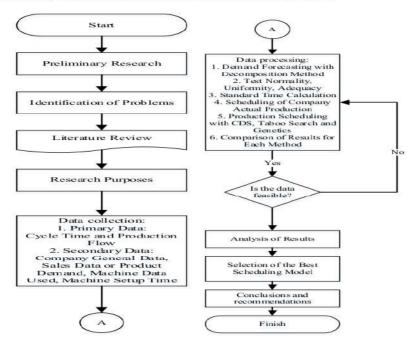


Figure 1. Flow Chart Research Methodology

4. Data Collection

4.1 Machine Data

The machines used for the production process are automatic and semi-automatic machines. Machine data can be seen in Table 1 below.

Table 1. Production Machine Data

Process	Machine Name	Capacity (I)	Number of Machines (unit)	Set-Up Time/Process (minutes)
Weighing	Scale	-	1	0,5
Pre-mixing	Small Mixer	200	3	1,5
Mixing / Grinding	Large Mixer	300	3	1,5
Filtering / Screening	Filter Machine	200	4	0,5
Quality Test	Color and Fineness Test Equipment	-	4	0,5
Packing	Press Tool	-	5	0,5

4.2 Product Demand Data

The request data will be a scheduled job—product demand data in the CV. Mega Abadi is made in a monthly period. The following is the demand for epoxy paint in January - August 2019 with 20-litre cans, as shown in Table 2 below

Table 2. Product Demand Data (unit cans)

	Product							
Period	6018 Epoxy TC Yellow Green	1003 Epoxy TC Banana Yellow	9016 Epoxy TC Snow White	7001 Epoxy TC Light Grey	9017 Epoxy TC Black			
January	59	45	60	55	45			
February	58	42	59	62	48			
March	60	42	60	60	45			
April	59	45	56	55	42			
May	50	52	56	50	50			
June	49	52	55	55	55			
Jule	55	50	55	55	50			
August	50	55	50	50	48			

4.3 Processing Time Data

It is essential to obtain the processing time; the cycle time is calculated using the stop-clock method (Liesly, Gozali, & Jap, L, 2019). After that, normal time and standard time are calculated (Gozali & Aditya, 273). The processing time is obtained from the standard time, which is added to the setup time. Processing time data can be seen in Table 3 below.

Table 3. Processing Time Data (minutes)

Job		Pre-Mixing	Mixing	Filtering	Uji Kualitas	Packing
6018	20,72	66,65	64,79	49,39	25,18	28,61
1003	21,27	68,33	65,62	50,97	26,22	28,44
9016	18,09	55,80	52,27	46,85	25,02	28,45
7001	19,22	60,03	57,29	49,94	27,69	29,06
9017	20.76	62.28	56.17	49.35	24.94	30.51

4.4 Decomposition Forecasting

Forecasting determined the number of products produced in September, using preliminary data from January to August 2019. After forecasting production amount to determine the order of company scheduling by the decomposition method, the results can be seen in Table 4 below.

Table 4. Decomposition Forecasting Results

Product	Total (unit cans)
6018 Epoxy TC Yellow Green	42
1003 Epoxy TC Banana Yellow	61
9016 Epoxy TC Snow White	51
7001 Epoxy TC Light Grey	46
9017 Epoxy TC Black	56

4.5 Company's Actual Scheduling

The company's actual scheduling is obtained from sorting forecasting from the largest to the smallest, so that the actual scheduling is obtained, namely 1003 Epoxy TC Banana Yellow - 9017 Epoxy TC Black - 9016 Epoxy TC Snow White - 7001 Epoxy TC Light Gray - 6018 Epoxy TC Yellow Green, with makespan 338.93 minutes and flowtime 290.55 minutes.

4.6 Scheduling with Campbell, Dudek, and Smith (CDS) Algorithm

Scheduling with the CDS algorithm begins by determining the number of iterations or K values with the formula m-1, where m is the number of machines or stages. The CV. Mega Abadi had 6 stages or stages, so 5 iterations must be completed. The table of makespan and flowtime values for each iteration can be seen in Table 5 below.

Table 5. Makespan and Flowtime Value Tables

Iteration	Makespan (minutes)	Flowtime (minutes)
K1	337,96	284,09
K2	316,59	286,98
K3	327,03	290,28
K4	326,02	292,98
K5	338.49	282.44

Based on the CDS method calculations, the most optimal job sequence was obtained in the second iteration with makespan 316.59 minutes and flowtime 286.98 minutes.

4.7 Scheduling with Tabu Search Algorithm

Tabu Search Algorithm is a collamation of the initial solution that has been obtained with the CDS Algorithm (Gozali,, Halim & Jap, 2019). Tabu Search Algorithm is a meta-heuristic method used to obtain a more optimal makespan and job order. First, to determine the aspiration level obtained from scheduling, the heuristic method with Z best derived from scheduling with the CDS algorithm (Gozali, Ariyanti & Tanujaya (2014)). Next, that is creating a taboo list and candidate list. There will be a job exchange (Pn to Px switch) and the results of the job exchange on the candidate list. The taboo list can be seen in Table 6 below.

Tabel 6. Tabu List

	Time (minutes)			
	Iteration 0	Iteration 1	Iteration 2	Iteration 3
Makespan	316,59	316,14	313,13	316,14
Mean Flow Time	286,98	290,21	288,61	290,21

The taboo list column that has been filled shows that the stopping criteria have been reached. The scheduling results with the best Tabu Search Algorithm, namely 6018 Yellow Green - 7001 Light Gray - 1003 Banana Yellow -9017 Black - 9016 Snow White with makespan 313.13 minutes and flowtime 288.61 minutes.

4.8 Scheduling with Genetic Algorithms

The steps in scheduling with Genetic Algorithms, such as:

- 1. Determination of the parameters us 23
 The parameters used in this study (popsize; pc; pm) = (30; 0.95; 0.01), where each generation's average fitness is used as an indicator.
- 2. Populatio anitialization Each product is made a notation to make it easier to randomize the job sequence. Product notation can be seen in Table 7 below.

Table 7. Product Notation

Product	Notation
7001 Light Grey	A
9017 Black	В
1003 Banana Yellow	C
6018 Yellow Green	D
9016 Snow White	Е

After the initialization stage is done, the randomization action carried out in a coordinated manner so that the selected chromosomes are obtained as much as pop size. The selected chromosomes can be seen in Table 8 below.

Table 8. Selected Chromosomes

Chromosome	Chromosome order	Chromosome	Chromosome order	Chromosome	Chromosome order
I1	ABCDE	I11	AEDCB	I21	BDCAE
12	BACDE	I12	AEDBC	I22	BCDAE
13	BCADE	I13	EADBC	I23	CBDAE
I4	BCAED	I14	EDABC	I24	CDBAE
I5	CBAED	I15	EDBAC	125	CDBEA
I6	CABED	I16	EDBCA	I26	DCBEA
17	CAEBD	I17	DEBCA	127	DCBAE
18	CAEDB	118	DBECA	128	ECBAD
19	ACEDB	119	DBCEA	129	CEBAD
I10	AECDB	120	DBCAE	130	CBEAD

3. Evaluation

Done by counting the makespan and fitness value of each chromosome. The formula obtains the fitness value:

$$Fitness = \frac{1}{Ms}....(5)$$

The results of the calculation of each chromosome's makespan and fitness values can be seen in Table 9 below.

Table 9. Makespan and Initial Population Fitness Value

Chromosome	Chromosome order	Makespan (minutes)	Fitness
I1	ABCDE	316,59	0,00316
I2	BACDE	317,66	0,00315
13	BCADE	328,57	0,00304
14	BCAED	344,98	0,00290
I5	CBAED	338,93	0,00295
16	CABED	335,14	0,00298
17	CAEBD	335,14	0,00298
18	CAEDB	324,22	0,00308
19	ACEDB	335,41	0,00298
I10	AECDB	323,31	0,00309
I11	AEDCB	323,31	0,00309
I12	AEDBC	339,64	0,00294
I13	EADBC	339,64	0,00294
I14	EDABC	345,04	0,00290
I15	EDBAC	345,04	0,00290
I16	EDBCA	334,23	0,00299
I17	DEBCA	326,95	0,00306
I18	DBECA	327,77	0,00305
I19	DBCEA	327,77	0,00305
120	DBCAE	316,14	0,00316
I21	BDCAE	325,51	0,00307
122	BCDAE	328,57	0,00304
I23	CBDAE	317,20	0,00315
124	CDBAE	326,02	0,00307
125	CDBEA	337,41	0,00296
I26	DCBEA	339,92	0,00294
127	DCBAE	328,53	0,00304
I28	ECBAD	342,31	0,00292
I29	CEBAD	334,68	0,00299
130	CBEAD	338,93	0,00295
	Total Fitness		0,09056

4. First Generation Calculations

a. Chromosome selection by the Roulette Wheel Method

First, that is to do the calculation of relative fitness (pi) with the formula:

Then, proceed with the calculation of the cumulative fitness value (qi) with the formula:

The relative fitness and cumulative fitness values of generation 1 chromosomes can be seen in Table 10 below.

Table 10. Relative Fitness and Cumulative Fitness of Generation 1 Chromosomes

Chromosome	Relative Fitness (Pi)	Cumulative Fitness (Qi)	Chromosome	Relative Fitness (Pi)	Cumulative Fitness (Qi)	Chromosome	Relative Fitness (Pi)	Cumulative Fitness (Qi)
I1	0,0349	0,0349	I11	0,0342	0,3690	I21	0,0339	0,7011
12	0,0348	0,0696	112	0,0325	0,4015	122	0,0336	0,7347
13	0,0336	0,1032	I13	0,0325	0,4340	I23	0,0348	0,7695
14	0,0320	0,1353	I14	0,0320	0,4660	124	0,0339	0,8034
15	0,0326	0,1678	I15	0,0320	0,4980	125	0,0327	0,8361
I 6	0,0329	0,2008	I16	0,0330	0,5311	126	0,0325	0,8686
17	0,0329	0,2337	I17	0,0338	0,5648	127	0,0336	0,9022
18	0,0341	0,2678	118	0,0337	0,5985	128	0,0323	0,9344
19	0,0329	0,3007	119	0,0337	0,6322	129	0,0330	0,9674
I10	0,0342	0,3349	120	0,0349	0,6671	130	0,0326	1

Generate as many random numbers as pop size, 30 on Microsoft. Excel with the formula RAND (). After that, selection can be made by sorting chromosomes according to the cumulative fitness value of each chromosome against random numbers. If the random number <fitness is cumulative, then select the chromosome as the parent candidate. The chromosomes selected are marked with a sign ('), as shown in Table 11 below.

Table 11. New Chromosomes Selected Results

Chromosome	Sequence	Makespan (minutes)	Fitness Value	Original Chromosome
I'1	BDCAE	325,51	0,003072102	I21
1'2	ABCDE	316,59	0,003158659	I1
I'3	CDBAE	326,02	0,003067296	124
Г4	CAEDB	324,22	0,003084325	18
I'5	DEBCA	326,95	0,003058572	I17
I'6	EDABC	345,04	0,002898215	I14
I'7	EADBC	339,64	0,002944294	I13
I'8	BCDAE	328,57	0,003043491	122
Г9	AEDCB	323,31	0,003093007	I11
I'10	CBDAE	317,2	0,003152585	123
I'11	ACEDB	335,41	0,002981426	19
I'12	DCBEA	339,92	0,002941869	126
I'13	CEBAD	334,68	0,002987929	129
Г14	EDBAC	345,04	0,002898215	I15
I'15	AEDBC	339,64	0,002944294	I12
Г16	EDBCA	334,23	0,002991952	I16
I'17	CBAED	338,93	0,002950462	15
Г18	BCAED	344,98	0,002898719	I4
I'19	DBECA	327,77	0,00305092	I18
I'20	AECDB	323,31	0,003093007	110

Chromosome	Sequence	Makespan (minutes)	Fitness Value	Original Chromosome
I'21	CDBEA	337,41	0,002963753	125
I'22	DCBAE	328,53	0,003043862	127
I'23	ECBAD	342,31	0,002921329	128
I'24	CBEAD	338,93	0,002950462	130
1'25	DBCAE	316,14	0,003163156	120
I'26	DBCEA	327,77	0,00305092	119
I'27	CABED	335,14	0,002983828	16
I'28	BCADE	328,57	0,003043491	13
I'29	CAEBD	335,14	0,002983828	17
1'30	BACDE	317,66	0,00314802	12

The next step is a crossover. Crossovers can be initiated by generating random numbers. After generating random numbers with the formula RAND () on Microsoft. Excel. Chode a random number that is smaller than a pc or crossover opportunity. Chromosomes that experience crossovers can be seen in Table 12 below.

Table 12. Chromosomes that Have Crossovers

Chromosome	Sequence	Makespan (minutes)	Fitness Value
I'1	BDCAE	325,51	0,003072102
I'2	ABCDE	316,59	0,003158659
I'3	CDBAE	326,02	0,003067296
I'4	CAEDB	324,22	0,003084325
1'5	DEBCA	326,95	0,003058572
1'6	EDABC	345,04	0,002898215
I'7	EADBC	339,64	0,002944294
1'8	BCDAE	328,57	0,003043491
1'9	AEDCB	323,31	0,003093007
I'10	CBDAE	317,2	0,003152585
ľ11	ACEDB	335,41	0,002981426
I'12	DCBEA	339,92	0,002941869
Г13	CEBAD	334,68	0,002987929
I'15	AEDBC	339,64	0,002944294
I'16	EDBCA	334,23	0,002991952
Г17	CBAED	338,93	0,002950462
I'18	BCAED	344,98	0,002898719
I'19	DBECA	327,77	0,00305092
I'20	AECDB	323,31	0,003093007
I'21	CDBEA	337,41	0,002963753
I'22	DCBAE	328,53	0,003043862
I'23	ECBAD	342,31	0,002921329

I'25	DBCAE	316,14	0,003163156
I'26	DBCEA	327,77	0,00305092
I'28	BCADE	328,57	0,003043491
I'29	CAEBD	335,14	0,002983828
1'30	BACDE	317,66	0,00314802

The selected chromosomes can be crossover. The method used is Two Point Crossover. The results of crossovers of all chromosomes can be seen in Table 13.

Table 13 Results of Generation I Crossovers

Chromosome	Sequence	Makespan (minutes)	Chromosome	Sequence	Makespan (minutes)	Chromosome	Sequence	Makespan (minutes)
I"1	ABCDE	316,59	I"10	CEDBA	324,07	I"20	CDBAE	326,02
I"2	DBCAE	316,14	I"11	ACBED	343,44	I"21	AECDB	323,31
I"3	CDBAE	326,02	I"12	DCEBA	339,92	I"22	ECDBA	337,29
I"4	CAEDB	324,22	I"13	AECBD	334,68	I"23	DCEBA	339,92
I"5	EDABC	345,04	I"15	CEADB	324,22	I"25	DBCEA	327,77
I"6	DEBAC	339,64	I"16	DBAEC	343,34	I"26	DBCAE	316,14
I"7	BCDEA	339,96	I"17	ADBCE	323,97	I"28	BAECD	334,68
I"8	EADBC	339,64	I"18	DBECA	327,77	I"29	ECABD	342,31
I"9	ABDEC	341,84	I"19	CBAED	338,93	I"30	DBCAE	316,14

The results of the crossover are then carried out mutations, with the steps:

- a. Count the number of bits in the population, i.e. pop size $x L = 30 \times 5 = 150$. L is the number of job sequences.
- b. Generating as many as 150 random numbers.
- c. Choose a random number whose value is below the chance of a mutation (pm) of 0.01. The mutation results can be seen in Table 14 below.

Tabel 14. The result from mutation

Chromosome	Mutated Job	Job Sequence	Makespan (minute)
I*6	1	CBDEA	328,32
I*8	3	ACDBE	327,03

The final population of the first generation can be seen in the following Table 15.

Table 15. Final First Generation and Early Second-Generation Populations

Chromosome	Sequence	Makespan (minutes)	Fitness Value	Chromosome	Sequence	Makespan (minutes)	Fitness Value
I"1	ABCDE	316,59	0,003158659	I"16	DBAEC	343,34	0,002912565
I"2	DBCAE	316,14	0,003163156	I"17	ADBCE	323,97	0,003086706
I"3	CDBAE	326,02	0,003067296	I"18	DBECA	327,77	0,00305092
I"4	CAEDB	324,22	0,003084325	I"19	CBAED	338,93	0,002950462
I"5	EDABC	345,04	0,002898215	I"20	CDBAE	326,02	0,003067296
I*6	CBDEA	328,32	0,003045809	I"21	AECDB	323,31	0,003093007

Chromosome	Sequence	Makespan (minutes)	Fitness Value	Chromosome	Sequence	Makespan (minutes)	Fitness Value
I"7	BCDEA	339,96	0,002941523	I"22	ECDBA	337,29	0,002964808
I*8	ACDBE	327,03	0,003057823	I"23	DCEBA	339,92	0,002941869
I"9	ABDEC	341,84	0,002925345	I'24	CBEAD	338,93	0,002950462
I"10	CEDBA	324,07	0,003085753	I"25	DBCEA	327,77	0,00305092
I"11	ACBED	343,44	0,002911717	I"26	DBCAE	316,14	0,003163156
I"12	DCEBA	339,92	0,002941869	I'27	CABED	335,14	0,002983828
I"13	AECBD	334,68	0,002987929	I"28	BAECD	334,68	0,002987929
I'14	EDBAC	345,04	0,002898215	I"29	ECABD	342,31	0,002921329
I"15	CEADB	324,22	0,003084325	I"30	DBCAE	316,14	0,003163156

The selected results are I"26 with makespan 316.14 minutes and flowtime 290.21 minutes in the first generation. Then, continue to the second generation with the initial population us 4; the first generation's final population. Recapitulation of the results to show each generation's best chromosomes can be seen in Table 16 below.

Table 16. Recapitulation of Chromosome Results

Generation	Chromosome Sequence	Makespan (minutes)	Flowtime	Fitness Value
I	DBCAE	316,14	290,21	0,00316316
II	DBCAE	316,14	290,21	0,00316316

The calculation stops until generation 2 because the value of fitness no longer changes in the second generation, which is 0.00316316. Then, the iteration stops, and the chosen job sequence is DBCAE or 6018 Yellow Green - 9017 Black - 1003 Banana Yellow - 7001 Light Gray - 9016 Snow White with makespan 316.14 and flowtime 290.21 minutes.

5. Results and Discussion

The following compares the company's actual scheduling with production scheduling design, shown in Table 17.

Tabel 17. The Comparison of Each Production Scheduling Method

	Actual	CDS Algorithm	Tabu Search Algorithm	Genetic Algorithm
	1003 Epoxy TC	7001 Epoxy TC	6018 Epoxy TC	6018 Epoxy TC
	Banana Yellow -	Light Grey -	Yellow Green -	Yellow Green -
	9017 Epoxy TC	1003 Epoxy TC	7001 Epoxy TC	9017 Epoxy TC
	Black - 9016	Banana Yellow -	Light Grey -	Black - 1003
T-1-C	Epoxy TC Snow	9017 Epoxy TC	1003 Epoxy TC	Epoxy TC
Job Sequence	White - 7001	Black - 6018	Banana Yellow	Banana Yellow
	Epoxy TC Light	Epoxy TC Yellow	-9017 Epoxy	- 7001 Epoxy
	Grey - 6018	Green - 9016	TC Black -	TC Light Grey
	Epoxy TC Yellow	Epoxy TC Snow	9016 Epoxy TC	9016 Epoxy TC
	Green	White	Snow White	Snow White
Makespan	338,93	316,59	313,13	316,14
Mean Flowtime	290,55	286,98	288,61	290,21
Efficiency Index	-	1,057	1,068	1,06
Relative Error	-	6,59%	7,61%	6,72%

Based on the above comparison, it can be seen that the Tabu Search Algorithm produces the minimum makespan when compared with the company's actual methods and other methods. The following compares the best results

from manual calculations with a program designed, a simple Python-based application program, which can be seen in Table 18 below.

Table 18. Comparison The Results of Manual and Program Calculations

	Manual	Calculation	Program Calculation		
	Makespan Mean Flowtime		Makespan	Mean Flowtime	
CDS Algorithm	316,59	286,98	316,59	287,04	
Tabu Search Algorithm	313,13	288,61	313,13	289,6	
Genetic Algorithm	316,14	290,21	316,19	282,83	

Based on Table 18, there isn't much difference between manual calculations and program calculations. Therefore, it can be concluded that the results of the designed program are valid.

6. Conclusions

Based on the results of manual calculations, Tabu Search Algorithm produces scheduling that minimizes the makespan of 313.13 minutes and the mean flow time of 288.61 minutes, with an efficiency index of 1.068 and a relative error of 7.61%. Genetic Algorithms can produce more optimal scheduling based on calculations using the program because the program can be calculated for up to 500 generations. Thus, Genetic Algorithms are the best to be used as scheduling.

References

Baker, K. R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons.

Kom, E. D. M. (2016). Performance Algoritma Genetika (GA) Pada Penjadwalan Mata Pelajaran. *InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan*, 1(1), 56-60.

Morton, T., & Pentico, D. W. (1993). Heuristic scheduling systems: with applications to production systems and project management (Vol. 3). John Wiley & Sons.

Ginting, R. (2009). Penjadwalan Mesin. Yogyakarta: Graha Ilmu.

Glover, F. & M. Laguna. Target Analysis to Improve a Tabu Search Method for Machine Schedulling. The Arabian Journal for Science and Engineering Vol. 16. No. 2B (1991): 239-253

Pinedo, Michael & X. Chao. Operations Scheduling with Applications in Manufacturing and Service. Singapore: Mc.Graw-Hill, 1999

Alfandianto, A., Nugroho, Y. A., & Setiafindari, W. (2017). "Penjadwalan Produksi Menggunakan Pendekatan Algoritma Genetika di PT. Pertani (Persero) Cabang di Yogyakarta". *Jurnal DISPROTEK*, 8(2)

Liesly, L., Gozali, L., & Jap, L. (2019). The Design of Hybrid Flow Shop Scheduling System with Tabu Search (TS) Method to Minimize Makespan at PT. Plasindo Elok.

Gozali, L., & Aditya, V. (2013). Usulan Penjadwalan Flowshop dengan Pendekatan Algoritma Tabu Search dan Algoritma Genetika di PT. Super Metal Bangka Jaya. *Jurnal Ilmiah Teknik Industri*, 1(2).

Gozali, Lina & Halim, Meisya & Jap, Lilyana. (2019). Analysis of Designing Job Shop Scheduling at PT. Harmoni Empat Selaras with Heuristic Classic Method, Tabu Search Algorithm Method and Active Scheduling Method to Minimize Production Makespan.

Gozali, L., Ariyanti, S., & Tanujaya (2014), A. USULAN PENJADWALAN MESIN CUTTING KERAMIK PARALEL DENGAN PENDEKATAN ALGORITMA TABU SEARCH DI PT. X. Jurnal Teknik Industri. Universitas Tarumanagara. Jakarta

Vania, E., (2020), PENJADWALAN PRODUKSI FLOWSHOP MENGGUNAKAN ALGORITMA CDS, TABU SEARCH DAN GENETIKA (STUDI KASUS: CV MEGA ABADI), Thesis, Universitas Tarumanagara, 2020

Vollman, T.E., W.L. Berry, D.C. Whybark, 1997. Manufactur-ing Planning and Control Systems, 4th Edition. Irwin, Homewood,

Biographies

Lina Gozali is a Lecturer in the Industrial Engineering Department of Universitas Tarumangara since 2006 and a freelance Lecturer at Universitas Trisakti since 1995. She graduated with her Bachelor's degree at Trisakti University, Jakarta - Indonesia. She got her Master's Degree at STIE IBII, Jakarta - Indonesia, and she recently got

her PhD at Universiti Teknologi Malaysia, Kuala Lumpur – Malaysia, in 2018. Her apprentice college experience was in the paper industry at Kertas Bekasi Teguh, shoe industry at PT Jaya Harapan Barutama and automotive chain drive industry at Federal Superior Chain Manufacturing. She teaches Production System and Supply Chain Management Subjects. She researched the Indonesian Business Incubator for her PhD. She has written almost 70 publications since 2008 in the Industrial Engineering research sector, such as Production Scheduling, Plant Layout, Maintenance, Line Balancing, Supply Chain Management, Production Planning, and Inventory Control. She had worked at PT. Astra Otoparts Tbk before she became a lecturer.

Vania Eliyanti is a graduate and brilliant student from Universitas Tarumanagara. She has some papers about maintenance and production system with her lecturer at Universitas Tarumanagara.

Frans Jusuf Daywin was born in Makasar, Indonesia on 24th November 1942. is a lecturer in the Department of Agricultural Engineering at Faculty of Agricultural Technology Bogor Agricultural University since 1964 conducted teaching, research, and extension work in the field of farm power and machinery and become a professor in Internal Combustion Engine and Farm Power directing and supervising undergraduate and graduate students thesis and dissertation and retired as a professor in 2007. In 1994 up to present as a professor in Internal Combustion Engine and Farm Power at Mechanical Engineering Program Study and Industrial Engineering Program Study Universitas Tarumanagara, directing and supervising undergraduate student's theses in Agricultural Engineering and Food Engineering Desain. In 2016 up to present teaching undergraduate courses of the introduction of concept technology, research methodology, and seminar, writing a scientific paper and scientific communication, and directing and supervising undergraduate student's theses in Industrial Engineering Program Study at the Faculty of Engineering Universitas Tarumanagara. He gezonis Ir degree in Agricultural Engineering, Bogor Agricultural University Indonesia in 1966, and finished the Master of Science in Agricultural Engineering at the University of Philippines, Los Banos, the Philippines 1981, and got the Doctor in Agricultural Engineering, Bogor Agricultural University Indonesia in 1991. He joined 4-month farm machinery training at ISEKI CO, AOTS, Japan in 1969 and 14 days agricultural engineering training at IRRI, Los Banos the Philippines, in March 1980. He received the honors "SATYA LANCANA KARYA SATYA XXX TAHUN" from the President of the Republic of Indonesia, April 22nd, 2006, and received appreciation as Team Jury from the Government of Indonesia Minister of Industry in Industry Start-Up 2008. He did several research and surveys in farm machinery, farm mechanization, agricultural engineering feasibility study in-field performance and cost analysis, land clearing and soil preparation in secondary forest and alang-alang field farm 1966 up to 1998. Up till now he is still doing research in designing food processing engineering in agriculture products. Up to the present he already elaborated as a conceptor of about 20 Indonesia National Standard (SNI) in the field of machinery and equipment. He joins the Professional Societies as a member: Indonesia Society of Agricultural Engineers (PERTETA); Indonesia Society of Engineers (PII); member of BKM-PII, and member of Majelis Penilai Insinyur Profesional BKM-PII.

Lamto Widodo is a Lecturer at Universitas Tarumanagara since 1994, joining the Mechanical Engineering Department. Involved as a team for the opening of the Industrial Engineering Department in 20(17):005. Starting in 2005, as a lecturer in the Industrial Engineering Department. Obtained a Bachelor's degree at the Sepuluh Nopember Institute of Technology Surabaya (ITS), then completed a Master degree at the University of Indonesia (UI) and graduated with the title Dr. at the Bogor Agricultural Institute (IPB). He is engaged in research and publication in Product Design and Ergonomics, Production Systems and Engineering Economics and teaches at various universities in Jakarta. Has published nearly 30 publications in the field of Industrial Engineering research both nationally and internationally. Active in various professional organizations, especially in the field of Ergonomics (IEA) and active in the Indonesian Industrial Engineering Higher Education Cooperation Agency (BKSTI).

Agustinus Purna Irawan was born in Mataram - Musirawas, South Sumatera, August 28, 1971. Is a Lecturer at Universitas Tarumanagara and has served as Chancellor since 2016 until now. Obtained a Bachelor of Mechanical Engineering From the Faculty of Engineering, Gadjah Mada University (1995), 24 lasters in Mechanical Engineering from the Faculty of Engineering, University of Indonesia (2003), a Doctor of Mechanical Engineering from the Faculty of Engineering, University of Indonesia (2011), Professional Engineer (Ir) Mechanical Engineering 20 m the Faculty of Engineering, Gadjah Mada University (2019) and Professor of Mechanical Engineering from the Ministry of Education and Culture (2014). The fields of scientific research and publication include: Product Design and Development, Strength of Materials, Natural Fiber Composites with implementation in the field of prosthesis and automotive components. Obtaining Research and Community Service Grants for Higher Education / Research and Technology BRIN / Untar / Others ≥ 100 titles; Patents: 7 and still in process: 4; Copyright: 9 books; Textbooks: 6

books; Book Chapter: 2 chapters; Scientific articles ≥ 100 titles. Obtained a Professional Certificate, namely the Educator Certificate, the Intermediate Professional Engineer Certificate (IPM) of the Indonesian Engineers Association (BKM PII) Vocational Engineer Association (BKM PII), and the ASEAN Engineer Certificate (ASEAN Eng.) From the ASEAN Federation Engineering Organizations (AFEO). He is active in education, various scientific activities, the world of business, professional associations, and various social activities. Received several awards: Best Graduate S2 UI GPA 4.00 cum laude (2003); First best Lecturer Kopertis Region III DKI Jakarta (2011); Best Presentation at the Seminar on Research Results of the Centralized Program, PUPT Dikti (2014); Honorary Member of The ASEAN Federation of Engineering Organizations, AFEO (2018); Best PTS Chancellor for the Academic Leader Award Program (2019).

Harto Tanujaya was born in Pemalang, Central Java, Indonesia on 18th May 1972, is a lecturer in the Department of Mechanical Engineering at Faculty of Engineering, Universitas Tarumanagara since 2000 conducted teaching, research and has served as Dean of Faculty of Engineering since 2018 until now. Obtained a Bachelor of Mechanical Engineering from the Faculty of Engineering, Universitas Tarumanagara, a Masters in Mechanical Engineering from the Faculty of Engineering, University of Indonesia, and a Doctor of Philosophy (Ph.D.) from the Department of Mechanical Science and Bioengineering, Osaka University, Japan (2011). The fields of scientific research and publication include, Biomechanical, Heat Transfer, Heat Exchanger, Cooling, Numerical Methods. He joins the Professional Society as a member of ASHRAE. Obtaining Research and Community Service Grants from Ministry of Research & Technology and LPPM UNTAR. The publication of national and international scientific articles more than 30 articles.

Siti Rohana Nasution is a Lecturer of the Industrial Engineering Study Program at the UPN Veteran Faculty of Engineering in Jakarta since August 2019. She has been a freelance lecturer at UPN V Jakarta since 2005 and Tarumanegara University since 2008. Since 2004, she has also been working as DPK to the Faculty of Industrial Engineering Study Program Technical University of Pancasila. In 1994, 12 was appointed as a civil servant and assigned to the IST AKPRIND Yogyakarta until the year of 2003. She holds a bachelor's degree at the Islamic University of Indonesia and a master's in engineering at the University of Indonesia. Her research focuses on lean manufacturing, ergonomics, production systems and factory facility layout planning. She is also involved in community service that specializes in waste management.

Flowshop Production Scheduling using CDS, Tabu Search, and Genetic Algorithm (Case Studies: CV. Mega Abadi)

originality report	Algorithm (Case S	Studies: CV. Mo	ega Abadi)
15% SIMILARITY INDEX	11% INTERNET SOURCES	9% PUBLICATIONS	6% STUDENT PAPERS
PRIMARY SOURCES			
	ted to School of ement ITB er	Business and	4%
2 reposit Internet Sou	ory.president.ad	:.id	2%
Frans Johns Frans	Eliyanti, Lina Goz usuf Daywin. "Co Production Sche Paper Case Stud Materials Science	omparison Sto duling System ies", IOP Conf	udy n from ference
Hoswar "Foreca Networ Plannin Contro Confere	ozali, Iveline Annori, Andre Jonatha esting Using Articks and Aggrega ng and Dynamic I for Rib and Sing ence Series: Man ering, 2020	an Christifan e ficial Neural te Production Model of Inve gle Knit Fabric	et al. n entory c", IOP

Publication

1 jom.unpak.ac.id Internet Source 7 www.ijsrp.org Internet Source 8 repo.bunghatta.ac.id Internet Source 9 repo.jayabaya.ac.id Internet Source 10 red.nrb.org.np Internet Source 11 Submitted to Christchurch Polytechnic Institute of Technology Student Paper 12 Submitted to Universitas Pelita Harapan Student Paper 13 Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010 Publication	5	D Setiawan, A Ramadhani, W N Cahyo. "Production Scheduling to Minimize Makespan using Sequencing Total Work (TWK) Method and Campbell Dudek Smith (CDS) Algorithm", IOP Conference Series: Materials Science and Engineering, 2019 Publication	1 %
repo.bunghatta.ac.id Internet Source repo.jayabaya.ac.id Internet Source red.nrb.org.np Internet Source 10	6		1 %
repo.jayabaya.ac.id red.nrb.org.np Internet Source 10 red.nrb.org.np Internet Source 11 Submitted to Christchurch Polytechnic Institute of Technology Student Paper 12 Submitted to Universitas Pelita Harapan Student Paper 13 Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	7		<1%
red.nrb.org.np Internet Source 10 red.nrb.org.np Internet Source 11 Submitted to Christchurch Polytechnic Institute of Technology Student Paper 12 Submitted to Universitas Pelita Harapan Student Paper 13 Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	8		<1%
Submitted to Christchurch Polytechnic Institute of Technology Student Paper Submitted to Universitas Pelita Harapan Student Paper Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	9		<1%
Institute of Technology Student Paper Submitted to Universitas Pelita Harapan Student Paper Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	10		<1%
Anita Tino. "Power and Performance Tabu Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	11	Institute of Technology	<1%
Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	12	· · · · · · · · · · · · · · · · · · ·	<1%
	13	Search Based Multicore Network-on-Chip Design", 2010 39th International Conference on Parallel Processing Workshops, 09/2010	<1%

14	Submitted to Curtin University of Technology Student Paper	<1%
15	Submitted to Ohio University Student Paper	<1%
16	Wawan Hermawan, Minoru Yamazaki, Akira Oida. "Experimental analysis of soil reaction on a lug of a movable lug wheel", Journal of Terramechanics, 1998 Publication	<1 %
17	sementonasa.co.id Internet Source	<1 %
18	L S Putranto. "The use of an online survey to speed up the data collection process", IOP Conference Series: Materials Science and Engineering, 2019 Publication	<1%
19	p3m.ppns.ac.id Internet Source	<1 %
20	repository.ubaya.ac.id Internet Source	<1%
21	sipeg.univpancasila.ac.id Internet Source	<1%
22	"Keynote Speakers", IOP Conference Series: Materials Science and Engineering, 2020	<1%
23	123dok.com Internet Source	<1%

24	N. Nariman-zadeh, K. Atashkari, A. Jamali, A. Pilechi, X. Yao. "Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms", Engineering Optimization, 2005 Publication	<1%
25	arxiv.org Internet Source	<1%
26	nanopdf.com Internet Source	<1%
27	www.scribd.com Internet Source	<1%
28	moam.info Internet Source	<1%
29	Arif, Teuku Yuliar, and Riri Fitri Sari. "Throughput Estimates for A-MPDU and Block ACK Schemes Using HT-PHY Layer", Journal of Computers, 2014. Publication	<1%
30	J. Schonberger. "Interactive solving of vehicle routing and scheduling problems: basic concepts and qualification of tabu search approaches", Proceedings of the 35th Annual Hawaii International Conference on System Sciences HICSS-02, 2002 Publication	<1%

Nikzad, Fatemeh, Javad Rezaeian, Iraj Mahdavi, and Iman Rastgar. "Scheduling of multi-component products in a two-stage flexible flow shop", Applied Soft Computing, 2015.

<1%

Publication

Exclude quotes On Exclude bibliography On

Exclude matches

Off