# FACTORY PLASTIC BAG LAYOUT DESIGN IN ELITE RECYCLING INDONESIA EXTENSION

by Lina Gozali

Submission date: 12-Apr-2021 05:12PM (UTC+0700) Submission ID: 1556996412 File name: Priska\_full.pdf (10.81M) Word count: 10592 Character count: 57482











ISSN: 1978-774X





# PREFACE

Dear Presenters and Delegates,

On behalf of the Organizing Committee, I am honered to welcome you to the 8<sup>th</sup> International Seminar on Industrial Engineering and Management (ISIEM). This seminar is organized by the Industrial Engineering Department from eight Universities, namely Tarumanagara University, Trisakti University, Esa Unggul University, Pasundan University, Atma Jaya Catholic University of Indonesia, Al Azhar Indonesia University, Telkom University and University of Muhammadiyah Malang.

This seminar is held to provide an effective forum for distinguished invited speakers, academicians, engineers, professionals and practitioners from Universities, research institutions, government agencies and industries to share or exchange ideas, experiences and recent progress in Industrial Engineering and Management.

We are very convinced that our presenter and delegates will gain many shared ideas and great experiences from this conference. Furthermore, our participants will enjoy additional insights from our plenary sessions' speakers, i.e., Associate Prof. Dr. Montalee Sasananan from Thammasat University, Thailand and Prof. Younghwan Lee, Ph.D from Kumoh National Institute of Technology, South Korea.

Through this seminar, we are committed to promote sustainable innovation in industrial technology, information and management in order to increase industrial competitiveness in facing the global challenges in industrial environment. Once again, it is my great honor to welcome you to the 8<sup>th</sup> International Seminar on Industrial Engineering and Management (ISIEM) 2015 in the great cultural city of Malang, Indonesia.

Best wishes,

Chair of the 8<sup>th</sup> ISIEM 2015 Dr. Ir. Lamto Widodo, M.T.

# COMMITTEE

## STEERING COMMITTEE

- 1. Budi Aribowo, S.T., M.Si.
- 2. Dr. Lamto Widodo S.T., M.T.
- 3. Dr. Dadang Surjasa, S.Si., M.T.
- 4. Ir. Arief Suwandi, M.T.
- 5. Hotma A. Hutahaean, S.T., M.T.
- 6. Ir. Toto Ramadhan, M.T.
- 7. Rino Andias Anugraha, S.T., M.M.
- 8. Ilyas Masudin, Ph.D.

(Trisakti University) (Esa Unggul University) (Atma Jaya Catholic University of Indonesia) (Pasundan University) (Telkom University) (University of Muhammadiyah Malang)

(Tarumanagara University)

(Trisakti University)

(Pasundan University)

(Esa Unggul University)

(Al Azhar Indonesia University)

(Tarumanagara University)

(Trisakti University)

(Trisakti University)

(Telkom University)

(Trisakti University)

(AI Azhar Indonesia University)

(AI Azhar Indonesia University)

(Al Azhar Indonesia University)

## **OPERATING COMMITTEE**

ChairmanDr. Lamto Widodo S.T., M.T.Co-ChairmanDr. Wisnu Sakti Dewobroto, S.T., M.Sc.SecretaryIr. Wahyu Katon, M.T.TreasuryIphov Kumala Sriwana, S.T., M.Si.

#### Leaflet :

- 1. Rahmi Maulidya, S.T., M.T.
- 2. Nunung Nurhasanah, S.T., M.Si.

#### Sponsorship :

- 1. Dr. Rina Fitriana, S.T., M.M.
- 2. Deden Witarsyah, S.T., M.Eng.
- 3. Niken Parwati, S.T., M.M.

#### Proceeding :

- 1. Rahmi Maulidya, S.T., M.T.
- 2. Widya Nurcahayanty T., S.T., M.T., MBA
- 3. Endro Wahyono

#### Seminar :

- 1. Dr. Ir. Nofi Erni, M.M.
- 2. Pratya Poeri Suryadhini, S.T., M.T.
- 3. Andre Sugioko, S.T., M.T.
- 4. Lina Gozali, S.T., M.M.
- 5. Dian Palupi Restuputri, S.T., M.T.
- 6. Dana Marsetya Utama, S.T., M.T.

#### Acomodation :

- 1. Vivi Triyanti, S.T., M.Sc.
- 2. Marsellinus Bachtiar, ST., MM.
- 3. I Wayan Sukania, S.T., M.T.
- 4. Thommy Eko Saputro, S.T., M.Eng.

#### Website :

- 1. Ir. Wahyu Katon, M.T.
- 2. Rino Andias Anugraha, S.T., M.M.
- 3. Dr. Ir. Yogi Yogaswara, M.T.
- The oth later stimulu

(Tarumanagara University) (Esa Unggul University)

(Telkom University) (Atma Jaya Catholic University of Indonesia) (Tarumanagara University) (University of Muhammadiyah Malang) (University of Muhammadiyah Malang)

(Atma Jaya Catholic University of Indonesia) (Atma Jaya Catholic University of Indonesia) (Tarumanagara University) (University of Muhammadiyah Malang)

(Pasundan University) (Telkom University) (Pasundan University)

# REVIEWER

- 1. Prof. Ahmad Syamil, Ph.D. (Arkansas State University, USA)
- 2. Assc. Prof. Dr. Maslin Masrom (Universiti Teknologi Malaysia, Malaysia)
- 3. Assc. Prof. Dr. Montalee Sasananan (Thammasat University, Thailand)
- 4. Prof. Younghwon Lee, Ph.D. (Kumoh National Institute of Technology, South Korea)
- 5. Fajar Kurniawan, S.T., M.Si. (Saint Mary's University of Hong Kong)
- 6. Dr. Ir. Tiena G. Amran (Trisakti University, Indonesia)
- 7. Dr. Ir. Triwulandari SD, M.M. (Trisakti University, Indonesia)
- 8. Dr. Ir. Nofi Erni, M.M. (Esa Unggul University, Indonesia)
- 9. Roesfiansjah, Ph.D. (Esa Unggul University, Indonesia)
- 10. Prof. Ir. Hadi Sutanto, MMAE., Ph.D. (Atma Jaya Catholic University of Indonesia, Indonesia)
- 11. Prof. Dr. Wegie Ruslan (Atma Jaya Catholic University of Indonesia, Indonesia)
- 12. Prof. Dr. Ir. S. Sardy, M.Eng.Sc. (Al Azhar Indonesia University, Indonesia)
- 13. Dr. Ir. Syarif Hidayat, M.Eng.Sc, M.M. (Al Azhar Indonesia University, Indonesia)
- 14. Dr. Ir. Hj. Tjutju Tarliah Dimyati, MSIE. (Pasundan University, Indonesia)
- 15. Dr. Ir. Hj. Arumsari, M.Sc. (Pasundan University, Indonesia)
- 16. Dr. Lamto Widodo, S.T., M.T. (Tarumanagara University, Indonesia)
- 17. Dr. Adianto, M.Sc. (Tarumanagara University, Indonesia)
- 18. Dr. Luciana Andrawina, M.T. (Telkom University, Indonesia)
- 19. Dr. Dida Diah Damayanti, M.Eng.Sc. (Telkom University, Indonesia)
- 20. Dr. Ahmad Mubin, M.T. (University of Muhammadiyah Malang, Indonesia)
- 21. Ilyas Masudin, Ph.D. (University of Muhammadiyah Malang, Indonesia)

# AGENDA

# Day 1 (March 17, 2015)

| 18:00 - 18:30 | Registration                                                                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18:30 - 19:30 | Dinner                                                                                                                                                                       |
| 19:30 - 19:45 | Opening Ceremony: Representation of Tarumanagara , Trisakti, Esa<br>Unggul, Pasundan, Al Azhar Indonesia, Atma Jaya, Telkom and<br>Muhammadiyah Malang University's greeting |
| 19:45 - 21:00 | Keynote # 1<br>Assc. Prof. Dr. Montalee Sasananan<br>(Thammasat University, Thailand)                                                                                        |

# Day 2 (March 18, 2015)

| 6:30 - 8:00   | Breakfast and Registration                                                         |
|---------------|------------------------------------------------------------------------------------|
| 8:00 - 9:15   | Keynote # 2                                                                        |
|               | Prof. Younghwon Lee, Ph.D<br>(Kumoh National Institute of Technology, South Korea) |
| 9:15 - 9:30   | Coffee and Tea Break                                                               |
| 9:30 - 12:00  | Parallel session #1                                                                |
| 12:00 - 13:00 | Lunch break                                                                        |
| 13:00 - 15:30 | Parallel session #2                                                                |
| 15:30 - 15:45 | Coffee and Tea Break                                                               |
| 18:15 - 20:00 | Dinner                                                                             |

# Day 3 (March 19, 2015)

| 6:30 - 8:30   | Breakfast           |
|---------------|---------------------|
| 8:30 - 10:00  | Parallel session #3 |
| 10:00 - 17:00 | City Tour           |

# PARALLEL SESSION

# MARCH 18 SESSION 1 ROOM 1 (QM, ER) Moderator : Budi Aribowo, S.T., M.Si.

| Time        | Paper                                                                                                                                                                                                                                                                 | Code | Paper<br>Code |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 9.30-9.45   | DEVELOPMENT OF CREATIVE COLORING TECHNIQUE<br>IN ELECTROPLATING<br>Paryana Puspaputra, Kamariah<br>Indonesia Islamic University                                                                                                                                       | QM   | 32            |
| 9.45-10.00  | QUALITY ANALYSIS USING FMEA METHOD ON<br>ASSEMBLY PROCESSES OF WASHING MACHINE<br>(CASE STUDY IN PANASONIC MANUFACTURING<br>INDONESIA)<br>Rifa Arifati, Ardika Rismayana<br>University of Pembangunan Nasional Veteran Jakarta                                        | QM   | 11            |
| 10.00-10.15 | DESIGNING THE ATTRIBUTES OF FOOD PRODUCTS<br>USING QUALITY FUNCTION DEPLOYMENT (QFD)<br>PHASE II<br>Muhamad Bazarado, Yurida Ekawati<br>Ma Chung University                                                                                                           | QM   | 22            |
| 10.15-10.30 | CHROME RECYCLING PROCESS OF TANNERY<br>LEATHER INDUSTRY WASTE USING LIMES<br>Rosad Ma'ali El Hadi, Rino Andias A., Haris Rachmat<br>Telkom University                                                                                                                 | QM   | 38            |
| 10.30-10.45 | ANALYSIS OF HUMAN ERROR PROBABILITY USING<br>HUMAN ERROR ASSESSMENT & REDUCTION<br>TECHNIQUE (HEART) IN DYEING DEPARTMENT PT.<br>XYZ<br>Fildzah Amimah Abbas and Budi Aribowo<br>Al Azhar Indonesia University                                                        | ER   | 91            |
| 10.45-11.00 | IMPLEMENTATIONOFPOKAYOKEONADMINISTRATION OF THE PALM OIL MILLM. HudoriCitra Widya Edukasi Polytechnic of Palm Oil Bekasi                                                                                                                                              | QM   | 41            |
| 11.00-11.15 | QUALITY ENGINEERING OF CRUDE PALM OIL (CPO):<br>USING MULTIPLE LINEAR REGRESSION TO ESTIMATE<br>FREE FATTY ACID<br>M. Hudori, Muhammad<br>Citra Widya Edukasi Polytechnic of Palm Oil, Bekasi<br>Malikussaleh University                                              | QM   | 63            |
| 11.15-11.30 | IMPLEMENTATION FAILURE MODE AND EFFECT<br>ANALYSIS (FMEA) METHOD AND KNOWLEDGE MAP<br>(CASE STUDY PT. GSB)<br>Rina Fitriana, Dorina Hetharia, Vella Denisha<br>Trisakti University                                                                                    | QM   | 64            |
| 11.30-11.45 | ANALYSIS TO DETERMINE THE SUITABLE COATING<br>MATERIALS FOR ENVIRONMENTAL FRIENDLY<br>COMPOSITES FROM OIL PALM EMPTY BUNCH FIBERS<br>Dorina Hetharia, Andy Cahyaputra Arya, Indra Surjati, Rully<br>Ario Dewanto Soeriaatmaja, Doni Putra Almi<br>Trisakti University | QM   | 80            |
| 11.45-12.00 | WALL MOUNTED STORAGE FOR HOME APPLIANCE<br>DESIGN<br>Indra Gunara Rochyat, Geggy Gamal Surya<br>Esa Unggul University                                                                                                                                                 | ER   | 100           |

# MARCH 18 SESSION 1 ROOM 2 (PS)

Moderator : Dr. Ir. Tiena G. Amran

| Time        | Paper                                                                                                                                                                                                                                                                                      | Code | Paper<br>Code |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 9.30-9.45   | COMPARING ALTERNATIVE PLANT LAYOUTS BASED<br>ON CRAFT AND BLOCPLAN ALGORITHMS<br>Leonardo, Hotma Antoni Hutahaean, Hui-Ming Wee<br>Atma Jaya Catholic University of Indonesia<br>Chung Yuan Christian University                                                                           | PS   | 03            |
| 9.45-10.00  | STORE LAYOUT FOR VIRTUAL RETAILING: A<br>LITERATURE REVIEW<br>Ilyas Masudin, Mukhlish Fuadi                                                                                                                                                                                                | PS   | 13            |
| 10.00-10.15 | OPTIMIZATION OF PREVENTIVE MAINTENANCE<br>PROGRAM AND TOTAL SITE CREW FOR BASE<br>TRANSCEIVER STATION (BTS) USING RELIABILITY<br>CENTERED MAINTENANCE (RCM) AND LIFE CYCLE<br>COST (LCC) METHOD<br>Rd. Rohmat Saedudin, Judi Alhilman, Fransiskus Tatas Dwi<br>Atmaji<br>Telkom University | PS   | 23            |
| 10.15-10.30 | THE PRODUCTION PLANNING FOR PROFIT<br>MAXIMIZATION (A CASE STUDY AT A COCOA<br>PROCESSING INDUSTRY)<br>Syamsul Anwar, Yunizurwan, Jasril<br>Padang Industrial Technology Academic                                                                                                          | PS   | 24            |
| 10.30-10.45 | FRAMEWORK FOR E-LEARNING CONTENT<br>DEVELOPMENT ON FACILITY PLANNING SUBJECT<br>Muhammad Iqbal, Devi Pratami, Ika Arum Puspita<br>Telkom University                                                                                                                                        | PS   | 25            |
| 10.45-11.00 | EMS-SCADA DESIGN OF AC USAGE ON A BUILDING<br>Haris Rachmat, Rino Andias Anugraha, Tatang Mulyana<br>Telkom University                                                                                                                                                                     | PS   | 43            |
| 11.00-11.15 | ELECTRICITY PLANNING THROUGH RENEWABLE<br>ENERGY UTILIZATION IN NORTH KALIMANTAN<br>Yudha Prasetyawan, Suparno, Imam Baihaqi<br>Sepuluh Nopember Institute of Technology                                                                                                                   | PS   | 71            |
| 11.15-11.30 | SAFETY STOCK DETERMINATION BASED ON<br>DISTURBANCE CONTROL MODEL AT PT DEE<br>Iveline Anne Marie, Fahmi M. Prasetyo, Nora Azmi<br>Trisakti University                                                                                                                                      | PS   | 55            |
| 11.30-11.45 | IMPLEMENTATION OF QUEING THEORY AND<br>HEURISTIC METHOD FOR SHCEDULING SYSTEM OF<br>XYZ AUTO SERVICE CENTER<br>Cut Fiarni, Sonna Kristina, Julia Rintjap<br>Harapan Bangsa Institute of Technology (ITHB)                                                                                  | PS   | 62            |
| 11.45-12.00 | COST BASED ELEVATOR SCHEDULING IN UNIVERSITY<br>OF AL AZHAR INDONESIA<br>Niken Parwati, Clamaya Arin Nurpraja, Firza Ibrahim<br>Kartohadiprodjo, Ainun Jariyah, Dimas Ayu Mardhika<br>Al Azhar Indonesia University                                                                        | PS   | 89            |

# MARCH 18 SESSION 1 ROOM 3 (DSS)

| Moderator : Dr. I | Dadang Sur | jasa, S.Si., | M.T. |
|-------------------|------------|--------------|------|
|-------------------|------------|--------------|------|

| Time        | Paper                                                                                                                                                                                                                                                                                                              | Code | Paper<br>Code |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 9.30-9.45   | APPLICATION ANALYTIC HIERARCHY PROCESS (AHP):<br>A CASE STUDY OF E-WASTE MANAGEMENT IN<br>SURABAYA, INDONESIA<br>Dino Rimantho, Bambang Cahyadi, Denny Dermawan<br>Pancasila University<br>Surabaya Shipbuilding State Polytechnic                                                                                 | DSS  | 08            |
| 9.45-10.00  | THE DESIGN OF KNOWLEDGE MANAGEMENT SYSTEM<br>IN PT. ASMIN BARA BRONANG<br>Dadan Umar Daihani, Riana Elisabeth Swastika<br>Trisakti University<br>Trisakti International Bussines School                                                                                                                            | DSS  | 19            |
| 10.00-10.15 | PLANNING ROUTE DISTRIBUTION OF IKM DM USING<br>THE METHODS VEHICLE ROUTING PROBLEM (VRP)<br>AND SHORTEST-ROUTE ALGORITHM<br>Nunung Nurhasanah, Syarif Hidayat, Devi Utami Agustini,<br>Ajeng Putri Listianingsih, Faikar Zakky Haidar, Nida'ul<br>Hasanati<br>Al Azhar Indonesia University                        | DSS  | 20            |
| 10.15-10.30 | DECISION SUPPORT SYSTEM FOR POTENTIAL SALES<br>AREA OF PRODUCT MARKETING USING<br>CLASSIFICATION AND CLUSTERING METHODS<br>Evasaria M. Sipayung, Cut Fiarni, Randy Tanudjaya<br>Harapan Bangsa Institute of Technology                                                                                             | DSS  | 42            |
| 10.30-10.45 | ANALYSIS OF WEB-BASED INTEGRATED INFORMATION<br>SYSTEM ON PRODUCTION PLANNING AND CONTROL<br>FOR SMALL AND MEDIUM SCALE GARMENT INDUSTRY<br>Nida'ul Hasanati, Dody Haryadi, Nunung Nurhasanah, Syarif<br>Hidayat, Ajeng Listianingsih, Faikar Zakky Haidar, Devi<br>Utami Agustin<br>Al Azhar Indonesia University | DSS  | 70            |
| 10.45-11.00 | KNOWLEDGE MANAGEMENT ACHIEVING STRATEGY<br>BUSINESS ALIGNMENT IN HIGHER EDUCATIOAN<br>Riya Widayanti<br>Esa Unggul University                                                                                                                                                                                      | DSS  | 58            |
| 11.00-11.15 | DEVELOPMENT OF EXPERT SYSTEM-BASED<br>COMPUTER AIDED PROCESS PLANNING FOR<br>PRODUCTION COST ESTIMATION<br>Muhammad Ridwan Andi Purnomo<br>Islamic University of Indonesia                                                                                                                                         | DSS  | 60            |
| 11.15-11.30 | MANAGEMENT INFORMATION SYSTEM FOR PRINTING<br>MACHINE ASSIGNMENT PROCESS WITH TABU<br>SEARCH ALGORITHM<br>Evasaria M. Sipayung, Arief Samuel Gunawan, Teofilus<br>Harapan Bangsa Institute of Technology                                                                                                           | DSS  | 66            |
| 11.30-11.45 | ASSESSING KNOWLEDGE MANAGEMENT SYSTEMS'<br>SUCCESS BASED ON TECHNICAL AND SOCIAL<br>FACTORS<br>Amalia Yuli Astuti, Kadarsah Suryadi<br>Bandung Institute of Technology                                                                                                                                             | DSS  | 67            |
| 11.45-12.00 | ICT ECOSYSTEM IN OPEN GOVERNMENT DATA<br>INITIATIVE IN INDONESIA<br>Meldi Rendra<br>Telkom University                                                                                                                                                                                                              | DSS  | 58            |

# MARCH 18 SESSION 2 ROOM 1 (SCM) Moderator : Ir. Arief Suwandi, M.T.

| Time        | Paper                                                                                                                                                                                                                                                                 | Code | Paper<br>Code |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 13.00-13.15 | SUPPLIER SELECTION WITH THE INTEGRATION OF<br>DEMATEL (DECISION MAKING TRIAL AND EVALUATION<br>LABORATORY) AND AHP (ANALYTIC HIERARCHY PROCESS)<br>: A LITERATURE REVIEW<br>Wahyu Eko Setiawan, Ilyas Masudin, Fien Zulfikarijah<br>University of Muhammadiyah Malang | SCM  | 05            |
| 13.15-13.30 | THE APPLICATION OF GREEN SUPPLY CHAIN MANAGEMENT<br>IN ELECTRONIC INDUSTRY INDONESIAN: A LITERATURE<br>REVIEW<br>Akhmad Jakfar, Fien Zulfikarijah, Ilyas Masudin<br>University of Muhammadiyah Malang                                                                 | SCM  | 09            |
| 13.30-13.45 | THE ROLE OF MANUFACTURING SUPPLY CHAIN ANALYSIS<br>IN MEETING CUSTOMER NEEDS OF BATIK SHIRT<br>Sutarman, Refa Septiyanto<br>Pasundan University                                                                                                                       | SCM  | 10            |
| 13.45-14.00 | THE DRIVERS OF CHOOSING THIRD-PARTY LOGISTIC (3PL)<br>PROVIDERS: A FRAMEWORK MODEL USING STRUCTURAL<br>EQUATION MODELING<br>Ilyas Masudin, Suci Dewi Ayurarasati, Dana Marsetya Utama<br>University of Muhammadiyah Malang                                            | SCM  | 14            |
| 14.00-14.15 | SUPPLY CHAIN MODEL DESIGN FOR "WEDANG UWUH"<br>SMALL AND MEDIUM ENTERPRISE (SME) IN DAERAH<br>ISTIMEWA YOGYAKARTA (CASE STUDY ON PROGRESS<br>JOGJA SME)<br>Vembri Noor Helia, Dwi Handayani<br>Islamic University of Indonesia                                        | SCM  | 30            |
| 14.15-14.30 | DETERMINATION OF SUPPLIER SELECTION CRITERIA<br>USING ANALYTICAL HIERARCHY PROCESS IN THE FOOD<br>COMPANY<br>Winarno, Hendra Janaka, Suryani<br>Karawang Singaperbangsa University, Karawang, Indonesia                                                               | SCM  | 36            |
| 14.30-14.45 | THE STUDY OF THIRD PARTY LOGISTIC USAGE IN EAST<br>JAVA<br>Annisa Kesy Garside<br>University of Muhammadiyah Malang                                                                                                                                                   | SCM  | 39            |
| 14.45-15.00 | DESIGN OF COLD CHAIN THIRD-PARTY LOGISTICS (3PL)<br>FOR HALAL FOOD IN INDONESIA<br>Tiena Gustina Amran<br>Trisakti University                                                                                                                                         | SCM  | 51            |
| 15.00-15.15 | ROUTE AND TRANSPORTATION COSTS ANALYSIS<br>CONSIDERING THE CITY LOGISTICS SYSTEM FOR SINGLE<br>DEPOT PROBLEM (CASE STUDY: JABABEKA INDUSTRIAL<br>AREA COMPANIES)<br>Yogi Yogaswara<br>Pasundan University                                                             | SCM  | 52            |
| 15.15-15.30 | RISK IDENTIFICATION OF CACAO AGROINDUSTRY SUPPLY<br>CHAIN<br>Iphov Kumala Sriwana, Yandra Arkeman, Dahrul Syah, Marimin<br>Bogor Agriculture Institute Indonesia<br>Esa Unggul Universitas                                                                            | SCM  | 88            |

# MARCH 18 SESSION 2 ROOM 2 (ER)

Moderator : Ir. Toto Ramadhan, M.T.

| Time        | Paper                                                                                                                                                                                                                                                                                     | Code | Paper<br>Code |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 13.00-13.15 | USER-DESIGNER INTERACTION IN CULTURE-BASED<br>PRODUCTS : A REVIEW LITERATURE<br>Ratih Setyaningrum, Andi Rahadiyan Wijaya, Subagyo<br>Gadjah Mada University                                                                                                                              | ER   | 17            |
| 13.15-13.30 | WARNING DISPLAY DESIGN FOR THE TRANSJAKARTA BUS<br>COCKPIT TO MINIMIZE THE DRIVER'S ERROR BEHAVIOR<br>Dian Mardi Safitri, Astari Malinda, Nora Azmi, Pudji Astuti<br>Trisakti University                                                                                                  | ER   | 26            |
| 13.30-13.45 | DESIGN TOOL FOR TRANSFERING PATIENT TO IMPROVE<br>NURSES WORKING POSTURE WITH ERGONOMIC<br>APPROACH<br>Muhammad Iqbal, Eva Zaliha S, Amanda Puspita P, I Gede<br>Wisuda P<br>Telkom University                                                                                            | ER   | 28            |
| 13.45-14.00 | DESIGN OF KANSEI LAUNDRY BAG BY USING FIBER OF<br>WATER HYACINTH ( <i>EICHHORNIA CRASSIPES</i> )<br>Hartomo Soewardi, Amarria Dila Sari, and Ginanjar Maulana<br>Anom<br>Islamic University of Indonesia                                                                                  | ER   | 74            |
| 14.00-14.15 | THE ANALYSIS OF HEALTH AND SAFETY ASPECTS BY<br>USING HAZARD IDENTIFICATION AND RISK ASSESSMENT<br>(HIRA) METHOD<br>Dian Palupi Restuputri, Mochammad Fakhri<br>University of Muhammadiyah Malang                                                                                         | ER   | 31            |
| 14.15-14.30 | DEVELOPMENT STUDY OF SWAT SOFTWARE (SUBJECTIVE<br>WORKLOAD ASSESSMENT TECHNIQUE) TO THE<br>OPERATING SYSTEM WINDOWS-BASED 64-BIT<br>(Case study at Ergonomic Labs Industrial Engineering Bandung<br>Pasundan University)<br>Erwin Maulana Pribadi, Agung Kurniawan<br>Pasundan University | ER   | 37            |
| 14.30-14.45 | FRAMEWORK DEVELOPMENT AND MEASUREMENT OF<br>OPERATOR WORKLOAD USING MODIFIED COOPER HARPER<br>SCALE METHOD (Case Study in PT Sinar Terang Logamjaya<br>Bandung West Java)<br>Rizki Wahyuniardi, M. Yani Syafei, Wahyukaton<br>Pasundan University                                         | ER   | 44            |
| 14.45-15.00 | ANALYSIS OF NOISE LEVEL AND ITS EFFECTS ON<br>WORKERS IN A CEMENT PLANT<br>Syamsul Anwar, Musliyardi Ilham<br>Padang Industrial Technology Academic                                                                                                                                       | ER   | 46            |
| 15.00-15.15 | DEVELOPMENT OF COST-BENEFIT CALCULATION MODEL IN<br>HANDLING LOW BACK PAIN FROM THE ERGONOMIC<br>PERSPECTIVE<br>Istianah Muslim, Sri Gunani Partiwi<br>Polytechnic of Caltex Riau<br>Sepuluh Nopember Institute of Technology                                                             | ER   | 50            |
| 15.15-15.30 | DESIGN OF SATCHEL BAG FROM THE FIBERS OF<br>PINEAPPLE LEAVES BY USING KANSEI ENGINEERING<br>METHOD<br>Hartomo Soewardi, Riska Aminatun Zahroh, Hudaya<br>Islamic University of Indonesia                                                                                                  | ER   | 75            |

# MARCH 18 SESSION 2 ROOM 3 (IM) Moderator : Lina Gozali , S.T., M.M.

| Time        | Paper                                                                                                                                                                                                                                                                                                       | Code | Paper<br>Code |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 13.00-13.15 | DESIGN AND MAKING OF TELEVISION ADVERTISEMENT OF<br>PD. BPR BANK JOGJA WITH VISUAL EFFECT<br>Mei Parwanto Kurniawan, Agus Purwanto, Hafidh Rezha Maulana<br>Informatics Engineering Master Program, STMIK AMIKOM<br>Yogyakarta<br>Informatics Engineering, STMIK AMIKOM Yogyakarta<br>Yogyakarta, Indonesia | IM   | 12            |
| 13.15-13.30 | THE ALGORITHM FOR NEGOTIATING PRICES IN A PALM OIL<br>SUPPLY CHAIN<br>Syarif Hidayat<br>Al Azhar Indonesia University                                                                                                                                                                                       | IM   | 16            |
| 13.30-13.45 | DESIGN OF IT GOVERNANCE MODEL IN XYZ COLLEGE<br>Rizqi Sukma Kharisma, Anggit Dwi Hartanto<br>STMIK AMIKOM Yogyakarta                                                                                                                                                                                        | IM   | 18            |
| 13.45-14.00 | EBOLA VIRUS DISEASE PREVENTION - A PROBLEM<br>SOLVING STRATEGY BASED ON SARS CASE STUDY FROM<br>TAIWAN<br>Simon Wu<br>Chung Yuan Christian University                                                                                                                                                       | IM   | 27            |
| 14.00-14.15 | FRUGAL INNOVATION CHARACTERISTICS: MARKET,<br>PRODUCT AND BUSINESS PERSPECTIVE<br>Teddy Sjafrizal<br>Telkom University                                                                                                                                                                                      | IM   | 34            |
| 14.15-14.30 | LABWORK MANAGEMENT INFORMATION SYSTEM<br>SATISFACTION MEASUREMENT IN INDUSTRIAL<br>ENGINEERING STUDY PROGRAM TELKOM UNIVERSITY<br>Rayinda Pramuditya Soesanto, Amelia Kurniawati, Muhammad<br>Iqbal<br>Telkom University                                                                                    | IM   | 47            |
| 14.30-14.45 | DESIGNING A MULTIDIMENSIONAL DATA WAREHOUSE FOR<br>PROCUREMENT PROCESSES ANALYSIS USING BUSINESS<br>DIMENSIONAL LIFECYCLE METHOD (CASE STUDY ON PT.<br>ABC)<br>Ari Yanuar Ridwan<br>Telkom University                                                                                                       | IM   | 57            |
| 14.45-15.00 | BRAND EQUITY AS A HIGHER STANDARD OF LIVING AND<br>WEALTH IN DEVELOPMENT COUNTRY: THE STRATEGIC<br>ROLE OF INTEGRATIVE MODEL ON CONSUMER-BASED<br>BRAND EQUITY TO REDUCE INDONESIAN POVERTY<br>Maria Mia Kristanti<br>Widya Mandala Catholic University                                                     | IM   | 59            |
| 15.00-15.15 | CUSTOMERS CLUSTERING BASED ON RFM SCORE USING<br>GENETIC ALGORITHM<br>Muhammad Ridwan Andi Purnomo, Nur Riana Fajarwati<br>Islamic University of Indonesia                                                                                                                                                  | IM   | 61            |
| 15.15-15.30 | PROPOSED BUSINESS PROCESS USING BUSINESS<br>PROCESS IMPROVEMENT AT EMERGENCY DEPARTEMENT<br>OF DUSTIRA HOSPITAL<br>Fadhila Rachmawati, Sri Widaningrum, Mira Rahayu<br>Telkom University                                                                                                                    | IM   | 78            |

# MARCH 18 SESSION 3 ROOM 1 (DSS, IM, PS, QM)

Moderator : Dr. Ir. Nofi Erni, M.M.

| Time        | Paper                                                                                                                                                                                                                                      | Code | Paper<br>Code |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 15.45-16.00 | STUDY OF ABILITY TO PAY AND WILLINGNESS TO PAY FOR<br>PASSANGER OF COMMUTER LINE JAKARTA-BOGOR<br>Pudji Astuti, Vania Tertia<br>Trisakti University                                                                                        | ІМ   | 101           |
| 16.00-16.15 | KNOWLEDGE MANAGEMENT ENABLERS FOR THE<br>ASSESSMENT OF KMS READINESS IMPLEMENTATION<br>Gilang Ramadhan, Luciana Andrawina<br>Telkom University                                                                                             | DSS  | 83            |
| 16.15-16.30 | 3D SOLAR SYSTEM VISUALIZATION WITH OpenGL<br>Feby Fitria, Riri Safitri<br>Al Azhar Indonesia University                                                                                                                                    | DSS  | 90            |
| 16.30-16.45 | DESIGN OF KNOWLEDGE ACQUISITION MODEL IN<br>GLAUCOMA MEDICAL TREATMENTS RECOMMENDER<br>SYSTEM<br>Cut Fiarni<br>Harapan Bangsa Institute of Technology                                                                                      | DSS  | 48            |
| 16.45-17.00 | GROUP REPLACEMENT MODEL FOR SCHEDULING OF<br>TOOLS REPLACEMENT CONSIDERING QUALITY COST,<br>PREVENTIVE AND FAILURE REPLACEMENT COST<br>Dadang Arifin, Rinto Yusriski, Dwi Putri Ramasari<br>Ahmad Yani University                          | PS   | 35            |
| 17.00-17.15 | CONTENT ANALYSIS SILICA (SiO2) IN PROCESS WATER<br>DETERMERALISATION WITH 4M METHOD<br>Sukanta, Hendra Janaka, Rian Arie Permana<br>Karawang Singaperbangsa University                                                                     | QM   | 82            |
| 17.15-17.30 | THE HOLISTIC MODEL OF NEW PRODUCT DEVELOPMENT<br>PROCESS<br>Ronald Sukwadi<br>Atma Jaya Catholic University of Indonesia                                                                                                                   | QM   | 94            |
| 17.30-17.45 | DESIGNING QUALITY ASSURANCE SYSTEM FOR RAW<br>MATERIAL ACCEPTANCE PROCESS IN BATIK INDUSTRIES<br>USING BUSINESS PROCESS IMPROVEMENT METHOD<br>Dida Diah Damayanti, Luciana Andrawina, Sri Widaningrum,<br>HandaruJati<br>Telkom University | QM   | 97            |
| 17.45-18.00 | IDENTIFICATION OF KNOWLEDGE MANAGEMENT SYSTEM<br>FOR QUALITY IMPROVEMENT OF NATURAL FIBER CRAFT<br>INDUSTRY<br>Nofi Erni, Iphov Kumala S., Riya Widayanti<br>Esa Unggul University                                                         | DSS  | 92            |
| 18.00-18.15 | RELIABILITY ANALYSIS OF BLOOD LEAKAGE DETECTION<br>SYSTEM<br>Pratondo Busono<br>Center for Information and Communication Technology, BPPT<br>Al Azhar Indonesia University                                                                 | QM   | 77            |
| 18.15-18.30 | PRODUCTION TARGET ACHIEVEMENT MODEL<br>DEVELOPMENT USING BINARY LOGISTIC REGRESSION<br>METHOD IN PT. HANSAE KARAWANG INDONESIA<br>Ade Momon S., Ikbal Wijaya<br>Karawang Singaperbangsa University                                         | PS   | 72            |

## MARCH 18 SESSION 3 ROOM 2 (ER, IM) Moderator : Pratva Poeri Survadhini., S.T., M.T.

| Time        | Paper                                                                                                                                                                                                             | Code | Paper<br>Code |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 15.45-16.00 | HABITUAL EFFECTS IN ELEVATOR<br>Wulan Meiniar, Fitrah Azizah, Rifqi Muhammad, Korry Azrina,<br>Dessy Indah Savitri<br>Al Azhar Indonesia University                                                               | ER   | 65            |
| 16.00-16.15 | INOVATIVE DESIGN OF WHEELCHAIR BY USING USER<br>CENTERED DESIGN APPROACH<br>Hartomo Soewardi, Bagus Tri Ajie, R.Abdul Jalal<br>Islamic University of Indonesia                                                    | ER   | 73            |
| 16.15-16.30 | SPRINKLER SYSTEM EVALUATION TO MEET FIRE<br>PROTECTION FACILITY AT THE MAIN LABORATORY AT PT.<br>PUPUK KUJANG CIKAMPEK<br>Moh. Syarwani, Wahyukaton<br>Pasundan University                                        | ER   | 53            |
| 16.30-16.45 | PROTOTYPE OF BOOK PREVIEW USING AUGMENTED<br>REALITY ON ANDROID SMARTPHONES<br>Riri Safitri, Aldi Oktavianto, Fahrul Rozi<br>Al Azhar Indonesia University                                                        | ER   | 76            |
| 16.45-17.00 | THE ERGONOMIC DESIGN OF A MINI HOTEL FOR<br>INDONESIAN TRAVELLERS<br>Lamto Widodo, Nashir Setiawan, Kevin Leo Winata<br>Tarumanagara University                                                                   | ER   | 87            |
| 17.00-17.15 | PRODUCT DESIGN OF CHILI CUTTER<br>Muhammad Iqbal, Hilman Syahir, Yogi Purnama Putra, Dian Ayu<br>Aprianti, Fiky Ryan Darmawan, Diki Elfan Reksawana<br>Telkom University                                          | ER   | 29            |
| 17.15-17.30 | THE INFLUENCE OF FONT TYPE, FONT SIZE, LINE SPACING<br>AND TEXT BACKGROUND COLOUR ON VISUAL SEARCH OF<br>WEB PAGES<br>Yanto, Chih-Wei Lu<br>Chung Yuan Christian University                                       | ER   | 04            |
| 17.30-17.45 | ELEMENTARY SCHOOL STUDENT'S ANTHROPOMETRY FOR<br>THE PURPOSE OF SCHOOL FURNITURE<br>Yanto, Chih-Wei Lu<br>Chung Yuan Christian University<br>Atma Jaya Catholic University of Indonesia                           | ER   | 06            |
| 17.45-18.00 | DEVELOPMENT OF ANTHROPOMETRY GAUGE<br>Vivi Triyanti, Catherine Hadiwiyono<br>Atma Jaya Catholic University of Indonesia                                                                                           | ER   | 93            |
| 18.00-18.15 | BUSINESS PROCESS IMPROVEMENT USING QUALITY<br>FUNCTION DEPLOYMENT<br>Feliks Prasepta S. Surbakti, Rinakso Pramarta<br>Atma Jaya Indonesia Catholic University                                                     | IM   | 07            |
| 18.15-18.30 | ANALYSIS OF ORGANIZATIONAL PERFORMANCE WITH 360<br>DEGREE FEEDBACK METHOD (CASE STUDY: DEPARTMENT<br>OF INDUSTRIAL ENGINEERING UNIVERSITY OF XYZ)<br>Ahmad Chirzun, Zahra Fitria<br>Al Azhar Indonesia University | IM   | 104           |

# MARCH 18 SESSION 3 ROOM 3 (IM, PS, SCM)

Moderator : Andre Sugioko, S.T., M.T.

| Time                                                                                                                                                                                                                                           | Paper                                                                                                                                                                                                                                                                 | Code | Paper<br>Code |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|--|
| 15.45-16.00                                                                                                                                                                                                                                    | SPINNING MACHINE MAINTENANCE SCHEDULING AND COST<br>PLANNING UNIT USING MARKOV CHAINS METHOD AT ARGO<br>PANTES<br>Puspa Puspitasari, Ahmad Juang Pratama                                                                                                              | PS   | 103           |  |
| 16.00-16.15                                                                                                                                                                                                                                    | Al Azhar Indonesia University<br>BUSINESS MODEL GENERATION AND LEAN STARTUP<br>METHOD AS THE BASIS FOR BUSINESS DEVELOPMENT<br>FEASIBILITY STUDY, CASE STUDY OF PO. GAJAH MUNGKUR<br>SEJAHTERA<br>Wisnu Sakti Dewobroto, Julisa Siagian<br>Trisakti University        | IM   | 79            |  |
| 16.15-16.30DESIGN OF PERFORMANCE MEASUREMENT SYSTEM IN<br>ENGINEERING DEPARTMENT BASED ON MAINTENANCE<br>SCORECARD FRAMEWORK AND OMAX MODEL: A CASE<br>STUDY OF GLOBAL SANITARY WARE COMPANY<br>Wilson Kosasih, Silvi Ariyanti, Nathan Sukamto |                                                                                                                                                                                                                                                                       |      |               |  |
| Tarumanagara University         FACTORY PLASTIC BAG LAYOUT DESIGN IN ELITE RECYCLING           16.30-16.45         INDONESIA EXTENSION<br>Lina Gozali, Iveline Anne Marie, Prisca Andriani<br>Tarumanagara University; Trisakti University     |                                                                                                                                                                                                                                                                       |      |               |  |
| 16.45-17.00                                                                                                                                                                                                                                    | IMPROVEMENT OF KANBAN SYSTEM USING CONSTANT<br>QUANTITY WITHDRAWAL SYSTEM TO FULFILL BUFFER STOCK                                                                                                                                                                     |      |               |  |
| 17.00-17.15                                                                                                                                                                                                                                    | DESIGNING BUSINESS PROCESS TO SUPPORT BALANCED<br>SCORECARD-BASED PERFORMANCE MEASUREMENT (CASE<br>STUDY: FACULTY OF ENGINEERING, ATMA JAYA CATHOLIC<br>UNIVERSITY OF INDONESIA)<br>Vivi Triyanti' Nixon William Kumala<br>Atma Jaya Catholic University of Indonesia | IM   | 99            |  |
| 17.15-17.30                                                                                                                                                                                                                                    | REVIEW OF CURRENT RECRUITMENT PROCESS (CASE<br>STUDY : PT. X)<br>Mellisa Taswin, Marsellinus Bachtiar, Vivi Triyanti<br>Atma Jaya Catholic University of Indonesia                                                                                                    | IM   | 96            |  |
| 17.30-17.45                                                                                                                                                                                                                                    | LEAN AND GREEN APPROACH IN DEVISING OPTIMIZATION<br>PROGRAM TO DETERMINE DISTRIBUTION ROUTES BY USING                                                                                                                                                                 |      | 98            |  |
| 17.45-18.00                                                                                                                                                                                                                                    | SYSTEM DYNAMIC FOR ACCELERATION MODELING POLICY IN<br>DISADVANTAGE AREAS DEVELOPMENT<br>Fajar Kurniawan, Iphov Kumala Sriwana<br>Saint Mary's University, Hong Kong; Esa Unggul University                                                                            | IM   | 95            |  |
| 18.00-18.15                                                                                                                                                                                                                                    | ANALYSIS OF INFORMATION SHARING IMPACT IN TWO LEVEL<br>SUPPLY CHAIN WITH MULTIPLE RETAILERS (CASE STUDY IN                                                                                                                                                            |      |               |  |
| 18.15-18.30                                                                                                                                                                                                                                    | LEAN MANUFACTURING APPROACH WITH PARTICLE SWARM<br>OPTIMIZATION-LINE BALANCING<br>Rahmi Maulidya, Parwadi Moengin, Nisa Andama<br>Trisakti University                                                                                                                 | PS   | 102           |  |

# TABLE OF CONTENT

Preface Committee Reviewer Agenda Parallel Session Table Of Content

# **DSS-Decision Support System and Artificial Intelligence**

|    | -             |                                                                                                                                                                                                                                                                                |        |
|----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| No | Paper<br>code | Title and Author                                                                                                                                                                                                                                                               | Page   |
| 1  | 08            | Application Analytic Hierarchy Process (AHP): a case study of e-waste management in Surabaya, Indonesia <i>Dino Rimantho, Bambang Cahyadi, Denny Dermawan</i>                                                                                                                  | DSS-1  |
| 2  | 19            | The Design Of Knowledge Management System In PT Asmin Bara<br>Bronang<br>Dadan Umar Daihani, Riana Elisabeth Swastika                                                                                                                                                          | DSS-11 |
| 3  | 20            | Planning Route Distribution of IKM DM Using The Methods Vehicle<br>Routing Problem (VRP) And Shortest-Route Algorithm<br><i>Nunung Nurhasanah, Syarif Hidayat, Devi Utami Agustini, Ajeng</i><br><i>Putri Listianingsih, Faikar Zakky Haidar, Nida'ul Hasanati</i>             | DSS-21 |
| 4  | 42            | Decision Support System for Potential Sales Area of Product Marketing using Classification and Clustering Methods <i>Evasaria M. Sipayung, Cut Fiarni, Randy Tanudjaya</i>                                                                                                     | DSS-33 |
| 5  | 48            | Design of Knowledge Acquisition Model in Glaucoma Medical Treatments Recommender System<br><i>Cut Fiarni</i>                                                                                                                                                                   | DSS-40 |
| 6  | 58            | Knowledge Management Achieving Strategy Business Alignment in Higher Educatioan <b>Riya Widayanti</b>                                                                                                                                                                          | DSS-47 |
| 7  | 60            | Development of Expert System-Based Computer Aided Process<br>Planning for Production Cost Estimation<br><i>Muhammad Ridwan Andi Purnomo</i>                                                                                                                                    | DSS-56 |
| 8  | 66            | Management Information System for Printing Machine Assignment<br>Process with Tabu Search Algorithm<br><i>Evasaria M. Sipayung, Arief Samuel Gunawan, Teofilus</i>                                                                                                             | DSS-61 |
| 9  | 67            | Assessing Knowledge Management Systems' Success Based on Technical and Social Factors<br><i>Amalia Yuli Astuti, Kadarsah Suryadi</i>                                                                                                                                           | DSS-67 |
| 10 | 68            | ICT Ecosystem in Open Government Data Initiative in Indonesia <i>Meldi Rendra</i>                                                                                                                                                                                              | DSS-75 |
| 11 | 70            | Analysis of Web-Based Integrated Information System on Production<br>Planning and Control for Small And Medium Scale Garment Industry<br>Nida'ul Hasanati, Dody Haryadi, Nunung Nurhasanah, Syarif<br>Hidayat, Ajeng Listianingsih, Faikar Zakky Haidar, Devi Utami<br>Agustin | DSS-81 |

# DSS-Decision Support System and Artificial Intelligence

| No | Paper<br>code | Title and Author                                                                                                                                              | Page    |
|----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 12 | 83            | Knowledge Management Enablers for the Assessment of KMS Readiness Implementation <i>Gilang Ramadhan, Luciana Andrawina</i>                                    | DSS-88  |
| 13 | 90            | 3D Solar System Visualization With OpenGL<br><i>Feby Fitria, Riri Safitri</i>                                                                                 | DSS-94  |
| 14 | 92            | Identification of Knowledge Management System for Quality<br>Improvement of Natural Fiber Craft Industry<br><b>Nofi Erni, Iphov Kumala S., Riya Widayanti</b> | DSS-100 |

# **ER-Ergonomics**

| No | Paper<br>code | Title and Author                                                                                                                                                                                                                                                                       | Page  |
|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | 04            | The Influence of Font Type, Font Size, Line Spacing and Text Background Colour on Visual Search of Web Pages <i>Yanto, Chih-Wei Lu</i>                                                                                                                                                 | ER-1  |
| 2  | 06            | Elementary School Student's Anthropometry for The Purpose of School Furniture<br>Yanto, Chih-Wei Lu                                                                                                                                                                                    | ER-9  |
| 3  | 17            | User-Designer Interaction in Culture-Based Products : A Review Literature <b>Ratih Setyaningrum, Andi Rahadiyan Wijaya, Subagyo</b>                                                                                                                                                    | ER-15 |
| 4  | 26            | Warning Display Design for the Transjakarta Bus Cockpit to Minimize<br>the Driver's Error Behavior<br><i>Dian Mardi Safitri, Astari Malinda, Nora Azmi, Pudji Astuti</i>                                                                                                               | ER-23 |
| 5  | 28            | Design Tool for Transfering Patient to Improve Nurses Working<br>Posture with Ergonomic Approach<br><i>Muhammad Iqbal, Eva Zaliha S, Amanda Puspita P, I Gede Wisuda</i>                                                                                                               | ER-28 |
| 6  | 29            | Product Design of Chili Cutter<br>Muhammad Iqbal, Hilman Syahir, Yogi Purnama Putra, Dian Ayu<br>Aprianti, Fiky Ryan Darmawan, Diki Elfan Reksawana                                                                                                                                    | ER-34 |
| 7  | 31            | The Analysis of Health and Safety Aspects by Using Hazard Identification and Risk Assessment (HIRA) Method <b>Dian Palupi Restuputri, Mochammad Fakhri</b>                                                                                                                             | ER-37 |
| 8  | 37            | Development Study of SWAT Software ( <i>Subjective Workload</i><br><i>Assessment Technique</i> ) To The Operating System Windows-Based<br>64-Bit (Case study at Ergonomic Labs Industrial Engineering<br>Bandung Pasundan University)<br><i>Erwin Maulana Pribadi, Agung Kurniawan</i> | ER-45 |
| 9  | 44            | Framework Development And Measurement of Operator Workload<br>Using <i>Modified Cooper Harper Scale Method</i> (Case Study in PT Sinar<br>Terang Logamjaya Bandung West Java)<br><i>Rizki Wahyuniardi, M. Yani Syafei, Wahyukaton</i>                                                  | ER-49 |
| 10 | 46            | Analysis of Noise Level and Its Effects on Workers in A Cement Plant<br>Syamsul Anwar, Musliyardi Ilham                                                                                                                                                                                | ER-55 |
| 11 | 50            | Development of <i>Cost-Benefit</i> Calculation Model in Handling Low Back<br>Pain from The Ergonomic Perspective<br><i>Istianah Muslim, Sri Gunani Partiwi</i>                                                                                                                         | ER-61 |

| ER-Ergonomics |
|---------------|
|---------------|

|    | Dapar         |                                                                                                                                                                          |        |
|----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| No | Paper<br>code | Title and Author                                                                                                                                                         | Page   |
| 12 | 53            | Sprinkler System Evaluation to Meet Fire Protection Facility at The Main Laboratory at PT. Pupuk Kujang Cikampek <i>Moh. Syarwani, Wahyukaton</i>                        | ER-71  |
| 13 | 65            | Habitual Effects in Elevator<br>Wulan Meiniar, Fitrah Azizah, Rifqi Muhammad, Korry Azrina,<br>Dessy Indah Savitri                                                       | ER-76  |
| 14 | 73            | Inovative Design of Wheelchair by Using User Centered Design<br>Approach<br><i>Hartomo Soewardi, Bagus Tri Ajie, R. Abdul Jalal</i>                                      | ER-81  |
| 15 | 74            | Design of Kansei Laundry Bag by Using Fiber of Water Hyacinth ( <i>Eichhornia Crassipes</i> )<br><i>Hartomo Soewardi, Amarria Dila Sari, Ginanjar Maulana Anom</i>       | ER-87  |
| 16 | 75            | Design of Satchel Bag from The Fibers of Pineapple Leaves by Using Kansei Engineering Method<br>Hartomo Soewardi, Riska Aminatun Zahroh, Hudaya                          | ER-92  |
| 17 | 76            | Prototype of Book Preview Using Augmented Reality on Android Smartphones<br><i>Riri Safitri, Aldi Oktavianto, Fahrul Rozi</i>                                            | ER-97  |
| 18 | 87            | The Ergonomic Design Of A Mini Hotel For Indonesian Travellers<br>Lamto Widodo, Nashir Setiawan, Kevin Leo Winata                                                        | ER-103 |
| 19 | 91            | Analysis of Human Error Probability Using Human Error Assessment & Reduction Technique (HEART) in Dyeing Department PT. XYZ <i>Fildzah Amimah Abbas and Budi Aribowo</i> | ER-108 |
| 20 | 93            | Development of Anthropometry Gauge<br>Vivi Triyanti, Catherine Hadiwiyono                                                                                                | ER-111 |
| 21 | 100           | Wall Mounted Storage For Home Appliance Design<br>Indra Gunara Rochyat, Geggy Gamal Surya                                                                                | ER-119 |

# IM-Industrial Management

| No | Paper<br>code | Title and Author                                                                                                                                                       | Page  |
|----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | 07            | Business Process Improvement Using Quality Function Deployment<br><i>Feliks Prasepta S. Surbakti,Rinakso Pramarta</i>                                                  | IM-1  |
| 2  | 12            | Design and Making of Television Advertisement of PD. BPR Bank<br>Jogja With <i>Visual Effect</i><br><i>Mei Parwanto Kurniawan, Agus Purwanto, Hafidh Rezha Maulana</i> | IM-6  |
| 3  | 16            | The Algorithm for Negotiating Prices in A Palm Oil Supply Chain <i>Syarif Hidayat</i>                                                                                  | IM-12 |
| 4  | 18            | Design of It Governance Model in XYZ College<br>Rizqi Sukma Kharisma, Anggit Dwi Hartanto                                                                              | IM-21 |
| 5  | 27            | Ebola Virus Disease Prevention - A Problem Solving Strategy Based<br>On Sars Case Study From Taiwan<br><i>Simon Wu</i>                                                 | IM-27 |
| 6  | 34            | Frugal Innovation Characteristics: Market, Product and Business<br>Perspective<br><b>Teddy Sjafrizal</b>                                                               | IM-38 |

# IM-Industrial Management

| No | Paper<br>code | Title and Author                                                                                                                                                                                                                        | Page   |
|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 7  | 47            | Labwork Management Information System Satisfaction Measurement<br>in Industrial Engineering Study Program Telkom University<br><i>Rayinda Pramuditya Soesanto, Amelia Kurniawati, Muhammad</i><br><i>Iqbal</i>                          | IM-44  |
| 8  | 57            | Designing A Multidimensional Data Warehouse for Procurement<br>Processes Analysis Using Business Dimensional Lifecycle Method<br>(Case Study on PT. ABC)<br><i>Ari Yanuar Ridwan</i>                                                    | IM-49  |
| 9  | 59            | Brand Equity as A Higher Standard of Living and Wealth in Development Country: The Strategic Role of Integrative Model on Consumer-Based Brand Equity to Reduce Indonesian Poverty <i>Maria Mia Kristanti</i>                           | IM-55  |
| 10 | 61            | Customers Clustering Based on RFM Score Using Genetic Algorithm<br>Muhammad Ridwan Andi Purnomo, Nur Riana Fajarwati                                                                                                                    | IM-66  |
| 11 | 78            | Proposed Business Process Using Business Process Improvement at<br>Emergency Departement of Dustira Hospital<br><i>Fadhila Rachmawati, Sri Widaningrum, Mira Rahayu</i>                                                                 | IM-74  |
| 12 | 79            | Business Model Generation and Lean Startup Method as The Basis for<br>Business Development Feasibility Study, Case Study of Po. Gajah<br>Mungkur Sejahtera<br><i>Wisnu Sakti Dewobroto, Julisa Siagian</i>                              | IM-80  |
| 13 | 81            | Design of Performance Measurement System in Engineering<br>Department Based on Maintenance Scorecard Framework and Omax<br>Model: A Case Study of Global Sanitary Ware Company<br><i>Wilson Kosasih, Silvi Ariyanti, Nathan Sukamto</i> | IM-90  |
| 14 | 95            | System Dynamic for Acceleration Modeling Policy in Disadvantage<br>Areas Development<br><i>Fajar Kurniawan, Iphov Kumala Sriwana</i>                                                                                                    | IM-102 |
| 15 | 96            | Review Of Current Recruitment Process (Case Study : PT. X)<br>Mellisa Taswin, Marsellinus Bachtiar, Vivi Triyanti                                                                                                                       | IM-107 |
| 16 | 99            | Designing Business Process to Support Balanced Scorecard-Based<br>Performance Measurement (Case Study: Faculty of Engineering, Atma<br>Jaya Catholic University Of Indonesia)<br><i>Vivi Triyanti, Nixon William Kumala</i>             | IM-116 |
| 17 | 101           | Study of Ability to Pay and Willingness to Pay for Passanger of<br>Commuter Line Jakarta-Bogor<br><b>Pudji Astuti, Vania Tertia</b>                                                                                                     | IM-123 |
| 18 | 104           | Analysis of Organizational Performance with 360 Degree Feedback<br>Method (Case Study: Department of Industrial Engineering University<br>Of XYZ)<br><i>Ahmad Chirzun, Zahra Fitria</i>                                                 | IM-128 |

#### **PS-Production System** Paper No Title and Author Page code 1 01 Factory Plastic Bag Layout Design In Elite Recycling Indonesia PS-1 Extension Lina Gozali, Iveline Anne Marie, Prisca Andriani 2 Comparing Alternative Plant Layouts Based On CRAFT and Blocplan **PS-10** 03 Algorithms Leonardo, Hotma Antoni Hutahaean, Hui-Ming Wee 3 13 Store Layout For Virtual Retailing: A Literature Review PS-15 🛿 yas Masudin, Mukhlish Fuadi 4 23 Optimization of Preventive Maintenance Program and Total Site Crew PS-21 for Base Transceiver Station (BTS) Using Reliability Centered Maintenance (RCM) and Life Cycle Cost (LCC) Method Rd. Rohmat Saedudin, Judi Alhilman, Fransiskus Tatas Dwi Atmaii The Production Planning for Profit Maximization (A Case Study At A PS-28 5 24 Cocoa Processing Industry) Syamsul Anwar, Yunizurwan, Jasril 6 25 Framework for E-Learning Content Development On Facility Planning PS-35 Subject Muhammad Iqbal, Devi Pratami, Ika Arum Puspita Group Replacement Model for Scheduling of Tools Replacement 7 35 PS-41 Considering Quality Cost, Preventive And Failure Replacement Cost Dadang Arifin, Rinto Yusriski, Dwi Putri Ramasari 8 43 EMS-SCADA Design of AC Usage on A Building PS-45 Haris Rachmat, Rino Andias Anugraha, Tatang Mulyana 9 45 Improvement of Kanban System Using Constant Quantity Withdrawal PS-50 System to Fulfill Buffer Stock Replenishment on Single Aisle Project at PT. XX Hadi Muqti, Pratya Poeri Suryadhini, Widia Juliani, Dida Diah Damayanti 10 55 Safety Stock Determination Based on Disturbance Control Model at PT **PS-59** DEE Iveline Anne Marie, Fahmi M. Prasetyo, Nora Azmi 11 62 Implementation Of Queing Theory And Heuristic Method For PS-66 Shceduling System of XYZ Auto Service Center Cut Fiarni, Sonna Kristina, Julia Rintjap Electricity Planning Through Renewable Energy Utilization in North PS-71 12 71 Kalimantan Yudha Prasetyawan, Suparno, Imam Baihaqi Production Target Achievement Model Development Using Binary 13 72 PS-76 Logistic Regression Method in PT. Hansae Karawang Indonesia Ade Momon S., Ikbal Wijaya Cost Based Elevator Scheduling in University of Al Azhar Indonesia PS-83 14 89 Firza Ibrahim Niken Parwati, Clamaya Arin Nurpraja, Kartohadiprodjo, Ainun Jariyah, Dimas Ayu Mardhika Spinning Machine Maintenance Scheduling And Cost Planning Unit PS-88 16 103 Using Markov Chains Method at Argo Pantes Puspa Puspitasari, Ahmad Juang Pratama

# PS-Production System

| Page    |
|---------|
| e PS-94 |
| e       |

# **QM-Quality Engineering and Management**

| No | Paper<br>code | Title and Author                                                                                                                                                                                                                               | Page  |
|----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | 11            | Quality Analysis Using FMEA Method on Assembly Processes of Washing Machine (Case Study In Panasonic Manufacturing Indonesia) <i>Rifa Arifati, Ardika Rismayana</i>                                                                            | QM-1  |
| 2  | 22            | Designing The Attributes of Food Products Using Quality Function<br>Deployment (QFD) Phase II<br><i>Muhamad Bazarado, Yurida Ekawati</i>                                                                                                       | QM-6  |
| 3  | 32            | Development of Creative Coloring Technique in Electroplating<br><i>Paryana Puspaputra, Kamariah</i>                                                                                                                                            | QM-11 |
| 4  | 38            | Chrome Recycling Process of Tannery Leather Industry Waste Using<br>Limes<br>Rosad Ma'ali El Hadi, Rino Andias A., Haris Rachmat                                                                                                               | QM-17 |
| 5  | 41            | Implementation of Poka Yoke on Administration of The Palm Oil Mill<br><i>M. Hudori</i>                                                                                                                                                         | QM-21 |
| 6  | 63            | Quality Engineering of Crude Palm Oil (CPO): Using Multiple Linear<br>Regression to Estimate Free Fatty Acid<br><i>M. Hudori, Muhammad</i>                                                                                                     | QM-26 |
| 7  | 64            | Implementation Failure Mode And Effect Analysis (FMEA) Method and<br>Knowledge Map (Case Study PT. GSB)<br><i>Rina Fitriana, Dorina Hetharia, Vella Denisha</i>                                                                                | QM-34 |
| 8  | 77            | Reliability Analysis of Blood Leakage Detection System<br><i>Pratondo Busono</i>                                                                                                                                                               | QM-41 |
| 9  | 80            | Analysis To Determine The Suitable Coating Materials For<br>Environmental Friendly Composites From Oil Palm Empty Bunch<br>Fibers<br>Dorina Hetharia, Andy Cahyaputra Arya, Indra Surjati, Rully Ario<br>Dewanto Soeriaatmaja, Doni Putra Almi | QM-46 |
| 10 | 82            | Content Analysis Silica (SiO2) in Process Water Determeralisation with<br>4M Method<br><i>Sukanta, Hendra Janaka, Rian Arie Permana</i>                                                                                                        | QM-51 |
| 11 | 94            | The Holistic Model of New Product Development Process<br><i>Ronald Sukwadi</i>                                                                                                                                                                 | QM-57 |
| 12 | 97            | Designing Quality Assurance System for Raw Material Acceptance<br>Process in Batik Industries Using Business Process Improvement<br>Method<br>Dida Diah Damayanti, Luciana Andrawina, Sri Widaningrum,<br>Handarujati                          | QM-64 |

# SCM-Supply Chain Management

| No | Paper<br>code | Title and Author                                                                                                                                                                                                                    | Page   |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | 05            | Supplier Selection with The Integration of DEMATEL (Decision Making<br>Trial And Evaluation Laboratory) and AHP (Analytic Hierarchy<br>Process): A Literature Review<br><i>Wahyu Eko Setiawan, Ilyas Masudin, Fien Zulfikarijah</i> | SCM-1  |
| 2  | 09            | The Application of Green Supply Chain Management in Electronic Industry Indonesian: A Literature Review <b>Akhmad Jakfar, Fien Zulfikarijah, Ilyas Masudin</b>                                                                      | SCM-6  |
| 3  | 10            | The Role of Manufacturing Supply Chain Analysis in Meeting Customer Needs Of <i>Batik</i> Shirt <b>Sutarman, Refa Septiyanto</b>                                                                                                    | SCM-12 |
| 4  | 14            | The Drivers of Choosing Third-Party Logistic (3PL) Providers: A Framework Model Using Structural Equation Modeling <i>Ilyas Masudin, Suci Dewi Ayurarasati, Dana Marsetya Utama</i>                                                 | SCM-18 |
| 5  | 30            | Supply Chain Model Design For "Wedang Uwuh" Small and Medium<br>Enterprise (SME) in Daerah Istimewa Yogyakarta (Case Study on<br>Progress Jogja SME)<br>Vembri Noor Helia, Dwi Handayani                                            | SCM-27 |
| 6  | 36            | Determination of Supplier Selection Criteria Using Analytical Hierarchy<br>Process in The Food Company<br><i>Winarno, Hendra Janaka, Suryani</i>                                                                                    | SCM-34 |
| 7  | 39            | The Study of Third Party Logistic Usage in East Java<br>Annisa Kesy Garside                                                                                                                                                         | SCM-41 |
| 8  | 51            | Design of Cold Chain Third-Party Logistics (3PL) for Halal Food in<br>Indonesia<br><i>Tiena Gustina Amran</i>                                                                                                                       | SCM-49 |
| 9  | 52            | Route and Transportation Costs Analysis Considering The City<br>Logistics System for Single Depot Problem (Case Study: Jababeka<br>Industrial Area Companies)<br><b>Yogi Yogaswara</b>                                              | SCM-56 |
| 10 | 69            | Analysis of Information Sharing Impact in Two Level Supply Chain With<br>Multiple Retailers (Case Study in Two Manufacturing Companies, PT<br>XY And PT YZ)<br><i>Nurul Chairany, Imam Baihaqi, Noerhayati Amirullah</i>            | SCM-62 |
| 11 | 88            | Risk Identification of Cacao Agroindustry Supply Chain<br>Iphov Kumala Sriwana, Yandra Arkeman, Dahrul Syah, Marimin                                                                                                                | SCM-71 |
| 12 | 98            | Lean and Green Approach in Devising Optimization Program to Determine Distribution Routes by Using Tabu Search Method <i>Christine Natalia, Andre Sugioko, Clara Anne</i>                                                           | SCM-76 |



# FACTORY PLASTIC BAG LAYOUT DESIGN IN ELITE RECYCLING INDONESIA EXTENSION

Lina Gozali<sup>1</sup>, Iveline Anne Marie<sup>2</sup>, Prisca Andriani<sup>3</sup>

 <sup>1</sup>Lecturer in Industrial Engineering Program Tarumanagara University, Jakarta, Indonesia
 <sup>2</sup> Lecturer in Industrial Engineering Program Trisakti University, Jakarta, Indonesia
 <sup>3</sup> Students of Industrial Engineering Program Tarumanagara University, Jakarta, Indonesia ligoz@ymail.com

#### ABSTRACT

Plastic bags help people in everyday life. PT. Elastis Reka Aktif (ERA Plastik) is one of the industry engaged in manufacturing plastics. In 2014, PT. ERA plastik wants to expand to meet the needs of the market by opening a new plant with a capacity of 300 tons per month located at Jl. Raya Gema Lapik, South Cikarang which has a land area of 6000 m<sup>2</sup> and a building area of 2200 m<sup>2</sup>. To meet this need, this research aims to design the layout of a new plastic bag factory based approach Systematic Layout Planning (SLP). Based on the data input activities planned for the plant, the routing calculation sheet to determine the needs of the number of machines on the production floor, followed by the determination of manufacturing activities as well as facilities to support the needs of area calculation for each manufacturing facility. Next, performed linkage analysis between overall plant facility designed in Activity Relationship Chart (ARC) Plant. Based on the close relationship ARC Factory, design layout is done by using an algorithmic approach Relationship diagraming method to get the draft Activity Relationship Diagram (ARD) as a basis for designing factories Area Allocation Diagram (AAD) Plant. Because of the available land has limited, the design of the layout of the factory developed into three alternative layouts drawn using Autocad software 2010. Alternative layout will be evaluated quantitatively by calculating the values of closeness scores and use the checklist Material Handling Evaluation Sheet. Alternative selected layout will be created in the form of templates and 3 dimensions. Keywords: Plant Layout, , SLP, Relationship Diagramming, MHES

## 1. INTRODUCTION

PT. Elastis Reka Aktif (ERA PLASTIC) is one of the industry engaged in manufacturing plastics. Established in 1996, the product produced by PT. ERA PLASTIC is a consumer good by using technology extrusion blown film into plastic bags used everyday society.

Plastic bags help people in everyday life, especially for housewives who shop daily whether it is to the traditional markets, supermarkets, stalls, or small kiosks. But the ease of plastic bag making highly dependent housewives throughout its existence because it is very helpful and effective.

In 2014, PT. Plastic ERA wants to expand production to meet the needs of the market by opening a new plant, located on JI. Raya Gema Lapik, South Cikarang Indonesia under the name Elite Recycling Extension (ERI Extension). The location of

Factory Plastic Bag Layout Design (Lina Gozali) the new plant has a land area of  $6000 \text{ m}^2$ and a building area of  $\pm 2200 \text{ m}^2$ . The problem in this research is PT. Plastic ERA requires the design of plant layout for PT. ERI Extension with the goal of maximizing the capacity of 300 tons / month with the size of the location is available and meets the criteria of a good layout. Limitation of problems used in this study is predetermined capacity and follows the shape of the land owned land.

#### 2. LITERATURE REVIEW Definition of Plant Layout

According Sritomo (2009, p67), the layout is a major cornerstone in the industrial world. Plant layout can be defined as a procedure for setting the plant facilities to support the smooth production process by utilizing the area for placement of machines or other production support facilities, the smooth ISSN : 1978-774X

movement of material transfer, storage of materials, personnel work, and so forth.

#### Layout Type

According Wignjosoebroto (2009, p148) there are 4 (four) different types of layouts that are generally applied in the design layout, namely:

- a) The layout of the facility is based on the flow of production (Product Layout)
   If a factory is specialized in producing a variety of products in the quantities or large volume and long production time.
- b) Based Facility Layout Function or kinds Process (Process Layout) Generally used for the manufacturing industry working with relatively small production volumes and especially for the kind of products that are not standard.
- c) Location Based Facility Layout Materials and Equipment (Fixed Position Layout) Production facilities such as machines, humans, and other components move towards the main product components that are in a fixed position. Example: aircraft, in sound of the sea, and others.
- Facility Layout Based Products Group (Group Technology Layout)
   Grouping by step processes, forms, machines, and equipment used.

#### The characteristics of a Good Layout

According Hadiguna and Setiawan (2008, p15) in designing the plant layout criteria that there be the size of a good plant layout, among others:

- a) The planned material flow patterns; This criterion is not intended that the material flow jumps or backward (backtrack)
- b) The first operation close to the reception; This criterion aims to conserve the use of space and shorten the distance of displacement of material
- c) The last operation close to delivery; This criterion aims to shorten the distance of displacement of material
- d) Inventories of semi-finished goods or work in process (WIP) minimum; This criterion aims to achieve a balance trajectories in a way to avoid the buildup of WIP to the next process (bottleneck)
- e) Control of noise, dirt, dust, smoke, and moisture is adequate; This criterion aims

to maintain the Occupational Health and Safety (K3) for workers

#### Systematic Layout Planning (SLP)

A systematic and organized approach to planning the layout that was created by Richard Muther (1973) known as the Systematic Layout Planning (SLP). SLP diagram is shown in Figure 1.

#### **Calculation of Number of Machines**

According to Apple (1990), sheet production sequencing (routing sheet) is a tabulation of the steps are covered in producing certain components and details for related matters. The purpose of making the routing sheet is to know the number of machines or production equipment necessary to meet the desired production quantities by taking into account the percentage of scrap (waste), the engine capacity, and efficiency of the engine.



### Activity Relationship Chart (ARC)

According Wignjosoebroto (2009, p 199-203), map relationships or activities Activity Relationship Chart (ARC) is a method or technique that is simple in the plan layout of the facility or department based on the degree of relationship that is often expressed in aktvitias assessment is subjective.

> Factory Plastic Bag Layout Design (Lina Gozali)

# Algorithmic Approach Relationship diagraming

According to Tompkins (2nd edition, p295), ranked by proximity, placement between departments can use the algorithmic approach in which one example of the algorithmic approach Relationship is diagraming method. This method is the basis for constructing a new layout that prioritizes the department with the highest number of A. The required input is the activity relationship chart (ARC) and create a worksheet from the ARC as a basis for the construction activity relationship diagram (ARD).

#### Material Handling Checklist

Based on Material Handle Institute (MHI) removal of material covers all the basic

operations include a large movement of goods and packaging in the form of solid area between machines in the workplace as a limit. Material handling checklist uses basic principles of chemical transfer rules, criteria for a good layout, and a checklist as a list of things that should be checked.

## 3. RESEARCH METHODOLOGY

Methodology is a major stages that must be done before doing research on the subject matter so that research can be carried out more targeted and easier in analyzing problems to fit the expected goals. Flowchart of research methodology can be seen in Figure 2.



Routing Calculation Sheet conducted to determine the number of machines in the

Factory Plastic Bag Layout Design (Lina Gozali)

#### ISSN : 1978-774X

#### Proceeding 8<sup>th</sup> International Seminar on Industrial Engineering and Management

Table 1. Calculation of Number of Machines

| NAME OF THE                              | THE NUMBER OF<br>MACHINES NEEDED |               |               |
|------------------------------------------|----------------------------------|---------------|---------------|
| MACHINE                                  | Size<br>17 Cm                    | Size<br>24 Cm | Size<br>28 Cm |
| Mixer                                    | 1                                | 1             | 1             |
| Extrusion Blown Film 22                  |                                  |               |               |
| Cutting and Sealing with<br>auto puncher | 4                                | 3             | 2             |
| workbench 1                              | 1                                | 0             | 0             |
| workbench 2                              | 1                                | 1             | 1             |
| workbench 3                              | 1                                | 1             | 1             |
| workbench 4                              | 1                                | 1             | 1             |
| workbench 5                              | 1                                | 1             | 1             |

In determining the amount of engine requirements, not all machines are summed and rounded up. At the cutting and sealing machine with auto puncher to a size of 17 cm requires 4 machine, size of 24 cm requires 3 machine, and for the size of 28 cm requires 2 machines. This is due to the machine that is used to a size of 17 cm different from the machine to the size of 24 cm and 28 cm. The difference lies in the puncher is used and waste generated. While the machine needs extrusion blown film can be summed and rounded up because the same machine used and its use can be set according to the type of plastic bags that want to produce.

After calculating the needs of the machine, proceed to the calculation of the floor area of the main floor area that is followed by the calculation of production and production supporting floor area that can be seen in Table 2.

#### 5. FACILITY LAYOUT DESIGN

In planning the layout of the facility or the department tend to be based considerations are subjective of each facility or department. To simplify the design, made two (2) ARC where the division is based on the production room and in the plant area. Code given in the form of the letter A, E, I, O, U, and X are included reasons such as numeric code which is used is subjective reasons. Table descriptions reasons used are listed in Table 3. While examples Figure ARC and ARD plant service in the production of space can be seen in Figure 3.

| No   | Floor Department                                           | Area (m <sup>2</sup> ) |
|------|------------------------------------------------------------|------------------------|
| 1    | Mixer                                                      | 54,9                   |
| 2    | Extrusion Blown Film                                       | 361,20                 |
| 3    | Cutting and sealing with auto puncher<br>size 17 cm        | 127,76                 |
| 3    | Cutting and sealing with auto puncher<br>size 24 dan 28 cm | 213,18                 |
|      | Packing Size 17 cm                                         | 77,19                  |
| 4    | Packing Size 24 cm                                         | 59,44                  |
|      | Packing Size 28 cm                                         | 37,35                  |
| 5    | Warehouse Raw Materials                                    | 40,04                  |
| 6    | Warehouse Supporting Materials                             | 24,31                  |
| 7    | Finished Goods Warehouse                                   | 22,88                  |
| 8    | Receiving and Shipping                                     | 140                    |
| 9    | Office                                                     | 70                     |
| 10   | Mosque                                                     | 107,8                  |
| 11   | Waste Disposal                                             | 18                     |
| 12   | lockers                                                    | 10,35                  |
| 13   | Security guards in the post                                | 4,59                   |
| 14   | Heading guard Exit                                         | 3,49                   |
| 15   | Car Parking Area                                           | 116,89                 |
| 16   | Truck Parking Area                                         | 168                    |
| 17   | Motorcycle Parking Area                                    | 115,5                  |
| 18   | Electrical Room                                            | 112,01                 |
| 19   | Maintenance Tools                                          | 20,33                  |
| 20   | Toilet Room Production                                     | 16,88                  |
| 21   | Cooling Tower                                              | 9                      |
| 22   | QC Inspection area                                         | 9                      |
| 23   | Compressor                                                 | 14,89                  |
| TOTA | L                                                          | 1959,94                |

#### Table 3. Description Reason for use

| Reason Code | Description Reasons                                                                                                  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1           | use of notes together                                                                                                |  |  |  |  |
| 2           | using the same labor                                                                                                 |  |  |  |  |
| 3           | using the same space area                                                                                            |  |  |  |  |
| 4           | work using the same equipment                                                                                        |  |  |  |  |
| 5           | carry out the same work activities                                                                                   |  |  |  |  |
| 6           | facilitate supervision                                                                                               |  |  |  |  |
| 7           | degree of contact personnel who often do<br>the degree of contact paper work that is often done<br>workflow sequence |  |  |  |  |
| 8           |                                                                                                                      |  |  |  |  |
| 9           |                                                                                                                      |  |  |  |  |
| 10          | the scent is disturbing                                                                                              |  |  |  |  |
| 11          | disturbing other activities                                                                                          |  |  |  |  |
| 12          | reduce the time delay                                                                                                |  |  |  |  |
| 13          | facilitate removal                                                                                                   |  |  |  |  |
| 14          | facilitate coordination                                                                                              |  |  |  |  |

From Figure 3, the ARC is based on subjective assessments to determine the closeness of the relationship between machines. As an example for the mixer machine and blow machine given the code letters A reason for having the sequence of work flow, reducing the time delay, easy removal, and facilitate coordination so that the mixer machine and blow machine should really take precedence. Unlike the mixer engine and cutting machines. Mixer machines and cutting machines are given a code letter U because it has reason to interfere with other activities and cut mixer machine is not important for approximated. Furthermore displayed ARC, worksheets, and ARD Plant Service Outside the factory can be seen in Figure 4.

> Factory Plastic Bag Layout Design (Lina Gozali)

ISSN : 1978-774X







|      | larehotae R.             | aw Mater        | ids                                   | 1                                       |                                     | ~         |                                  |                        |                                   |           |      |          |                                      |                                  |     |                                        |
|------|--------------------------|-----------------|---------------------------------------|-----------------------------------------|-------------------------------------|-----------|----------------------------------|------------------------|-----------------------------------|-----------|------|----------|--------------------------------------|----------------------------------|-----|----------------------------------------|
| - 55 | lesteras 2               | eporting        | Materiala                             | 2                                       |                                     | A         | ~                                |                        |                                   |           |      |          |                                      |                                  |     |                                        |
| .51  | inished Goo              | da Warst        | cue                                   | 3                                       | N                                   |           | 200                              | >                      |                                   |           |      |          |                                      |                                  |     |                                        |
|      | Producti                 | on Roor         | n                                     | 4                                       | 1                                   |           |                                  | *                      | AL DO                             |           |      |          |                                      |                                  |     |                                        |
|      | 00                       | Tice            |                                       | .0                                      | 1                                   | 3         |                                  | ×                      |                                   |           |      |          |                                      |                                  |     |                                        |
|      | Rec                      | iving           |                                       | 0                                       | 1                                   | $\approx$ | $\gtrsim$                        | ×                      | S.                                | 35        |      | 2        |                                      |                                  |     |                                        |
|      | Ship                     | ping            |                                       | 1                                       | 1                                   |           |                                  | ×                      | 5                                 | 30.112    |      | ×        | $\geq$                               | £                                |     |                                        |
|      | Car Perks                | ng Area         |                                       | 8                                       | S                                   | æ         |                                  | X                      | 1                                 | X         | X    | ×        | Si                                   | $\geq$                           | *   |                                        |
| -    | Motorcyc                 | a Paricip       | LATE .                                | 9                                       | S                                   | as.       |                                  | S.                     | Sk                                | X         | 20   | X        | S                                    | X                                | j)> |                                        |
| -    | Truck Per                | ting Are        |                                       | 10                                      | S                                   |           | 12 de                            | X                      | Si                                | 悉         | ZA   | X        | Si                                   | ×                                |     |                                        |
| -    | This                     | Digest          |                                       | 11                                      | 10                                  |           | ž2                               | X                      | 5                                 | ×         | R.   | 1        |                                      |                                  |     |                                        |
|      | Sealty a                 | uarda ini       | the post                              | 12                                      | 10                                  | X         | X                                | 32                     | S.                                | ×         | 1 Al |          |                                      |                                  |     |                                        |
| -    | Heading                  | paid Bi         | t.                                    | 12                                      | S                                   | X         | 22X                              |                        | S:                                | ×         |      |          |                                      |                                  |     |                                        |
| -    | No                       | nque            |                                       | - 14                                    | 5                                   | X         |                                  | STI                    | 1                                 |           |      |          |                                      |                                  |     |                                        |
|      |                          |                 |                                       |                                         | 1                                   | 12        |                                  | e                      |                                   |           |      |          |                                      |                                  |     |                                        |
| -    | Toiler Of                | fice Roo        | es                                    | 10                                      | 1                                   |           | 1                                |                        |                                   |           |      |          |                                      |                                  |     |                                        |
|      |                          | fice Rod        | es                                    | 10                                      | 1                                   |           | 1                                |                        |                                   |           |      |          |                                      |                                  |     |                                        |
| _    |                          |                 | ei<br>3                               |                                         |                                     |           | 7                                | 8                      | 9                                 | 10        | II   | 12       | 13                                   | 14                               | 15  | 16                                     |
| Å    |                          | : lowers        |                                       | 18                                      | 15                                  |           | 7                                | 8                      | 9                                 | 10<br>6.7 | 11   | 12<br>16 | 13                                   | 14                               | 15  | 16<br>12                               |
| Å.   | Lo                       | z kora          | 3                                     | 10                                      |                                     |           | -                                | 8                      | 9                                 |           | 11   | -        | 13                                   | 14                               |     |                                        |
| Å    | Lo<br>1<br>2,3,4,4,7     | z kora          | 3                                     | 10                                      |                                     |           | -                                | 8                      | 9                                 | 6,7       | 11   | -        | 13                                   | 14                               |     |                                        |
| _    | Lo<br>1<br>23,44,7<br>10 | 2<br>1,3,4      | 3                                     | 10<br>4<br>1,2,3,5                      | 4,15                                |           | 1,3,6,10                         | -                      | 9                                 | 6,7<br>1  | 11   | -        | 13                                   | 14                               |     |                                        |
| A    | Lo<br>1<br>23,44,7<br>10 | 2<br>1,3,4<br>5 | 3<br>1,2,4,7<br>5,6,10<br>8,9,12,133, | 10<br>4<br>1,23,5<br>6,7,12<br>8,10,13, | 4,15<br>1,2<br>3,6,7,9<br>8,10,12,1 | 1,7,10    | 1,3,6,10<br>2,4,5,13<br>8,9,12,1 | 5<br>9,12<br>1,2,3,4,6 | 4,5,8,12<br>1,2,3,6,7<br>,10,13,1 | 6,7<br>1  |      | 16       | 7<br>1,2,3,4,<br>5,6,8,9,<br>10,12,1 | 1,2,3,4,<br>5,8,7,8,<br>9,30,12, | 5   | 12<br>1,2,3,4,<br>5,6,7,8,<br>9,10,13, |

The design of the plant outside the factory service using an algorithmic



approach relationship diagraming where input needed is ARC then created a worksheet to facilitate the selection of the department to be put in blockplant. From Figure 5 known relationships between departments is a most departments namely Warehouse Raw Materials 1 (GBB) so that 1 is the first department in blockplant can be seen in Figure 5 (a). Furthermore, the election department for the second, third, and so on are made to the chart from the table that contains the combination of the degree of interest. Examples from to chart can be seen in Table 4.

### Table 4. From to Chart Plant Service Outside with Factory





Proceeding 8<sup>th</sup> International Seminar on Industrial Engineering and Management



Figure 5. Blockplant Plant Service Outside with Factory

As an example from Table 4, it is found that the department was selected to blockplant 2 department because the department 2 has a relationship with department 1 and has the highest TCR of 32. Department subsequently selected to blockplant is 3 department because the department has a relationship 3 AA combination and have TCR the highest was 64. steps the same done to all the departments are elected to the blockplant which can be seen in Figure 4. at the time of entering into blockplant department, laying blockplant is clockwise (clockwise). The results of relationship diagraming method is Activity Relationship Diagram (ARD) which can be seen in Figure 6.



Figure 6. ARD Plant Service Outside with Plant

Results of selected ARD followed by making Area Allocation Diagram (AAD) blockplant where this blockplant AAD use in the conversion of the area into the templates area. Figure AAD blockplant can be seen in Figure 7.



Figure 7. AAD Blockplant Plant Service Outside with Factory

Because of the available land has limited the development of alternative layouts created an alternative that can be seen in Figure 8.



Figure 8. Development Alternative Layout

Factory Plastic Bag Layout Design (Lina Gozali)

Proceeding 8<sup>th</sup> International Seminar on Industrial Engineering and Management

ISSN : 1978-774X

## 6. EVALUATION OF LAYOUT

Evaluations were conducted to evaluate the layout design of the layout of the plant facility by adjusting the available land. How to evaluate the layout is done with two (2) ways, namely by using a scoring quantitatively and qualitatively using the Material Handling Checklist. The first method uses a scoring method which used the code letters have numeric values, namely:

A has value 25

- E has value 24
- I has value  $2^3$
- O has value  $2^2$ U has value  $2^1$
- X has value 2<sup>-1</sup>

If the borders between departments directly, then multiplied by 1. Conversely, if the borders between departments not directly, then multiplied by 0. Results of calculation of scoring alternative

development layout can be seen in Table 5. Based on Table 5 the results obtained from the calculation of an alternative scoring for 1, 276, Alternative 2 is 270, and the alternative 3 is 506. Table 5. Results Scoring Alternative Development Layout.

|             | Layoutt     |             |             |  |  |  |  |  |
|-------------|-------------|-------------|-------------|--|--|--|--|--|
|             | Alternative | Alternative | Alternative |  |  |  |  |  |
| Department  | 1           | 2           | 3           |  |  |  |  |  |
| 1           | 32          | 80          | 80          |  |  |  |  |  |
| 2           | 16          | 52          | 52          |  |  |  |  |  |
| 3           | 33          | 68          | 68          |  |  |  |  |  |
| 4           | 52          | 49          | 66          |  |  |  |  |  |
| 5           | 34          | 16          | 32          |  |  |  |  |  |
| 6           | 4           | 52          | 52          |  |  |  |  |  |
| 7           | 32          | 66          | 66          |  |  |  |  |  |
| 8           | 1           | 3           | 3           |  |  |  |  |  |
| 9           | 5           | 3           | 3           |  |  |  |  |  |
| 10          | 17          | 33          | 33          |  |  |  |  |  |
| 11          | 0           | 0           | 1           |  |  |  |  |  |
| 12          | 16          | 16          | 16          |  |  |  |  |  |
| 13          | 0           | 0           | 0           |  |  |  |  |  |
| 14          | 0           | 0           | 1           |  |  |  |  |  |
| 15          | 17          | 16          | 17          |  |  |  |  |  |
| 16          | 17          | 16          | 16          |  |  |  |  |  |
| Grand total | 276         | 470         | 506         |  |  |  |  |  |

While the second method, an alternative layout is qualitatively evaluated by using a checklist of material handling. The results of the evaluation using a checklist of material handling can be seen in Table 6.

## Table 6. Material Handling Checklist

|        | Material Handling Checklist                         |                       |                  |                       |                  |     |       |  |
|--------|-----------------------------------------------------|-----------------------|------------------|-----------------------|------------------|-----|-------|--|
| Number | Criteria of Good Facility Layout                    |                       | Alternative<br>1 |                       | Alternative<br>2 |     | ative |  |
|        |                                                     | Yes                   | No               | Yes                   | No               | Yes | No    |  |
| 1      | linkage activities planned                          | ✓                     |                  | ✓                     |                  | ✓   |       |  |
| 2      | planned material flow patterns                      | <ul> <li>✓</li> </ul> |                  | ✓                     |                  | ✓   |       |  |
| 3      | Flow straight                                       |                       | ✓                | ✓                     |                  | ✓   |       |  |
| 4      | step back (backtrack) minimum                       | ✓                     |                  | ✓                     |                  | ✓   |       |  |
| 5      | additional flow paths                               |                       | ✓                |                       | ✓                |     |       |  |
| 6      | straight alley                                      | ✓                     |                  | ✓                     |                  | ✓   |       |  |
| 7      | displacement between the minimum<br>operating       |                       | ~                |                       | ~                |     |       |  |
| 8      | planned removal method                              | <ul> <li>✓</li> </ul> |                  | <ul> <li>✓</li> </ul> |                  | ✓   |       |  |
| 9      | minimum displacement distance                       |                       |                  |                       |                  |     | √     |  |
| 10     | processing combined with the removal of material    |                       | ~                |                       | ~                |     | ~     |  |
| 11     | removal of moving toward acceptance<br>of delivery  | ~                     |                  | ~                     |                  | ~   |       |  |
| 12     | The first operation near the reception<br>circuitry |                       | ~                | ✓                     |                  | ~   |       |  |
| 13     | last operation close to delivery                    | ✓                     |                  | ✓                     |                  | ✓   |       |  |

Factory Plastic Bag Layout Design (Lina Gozali) ISSN : 1978-774X

Proceeding 8<sup>th</sup> International Seminar on Industrial Engineering and Management

|        | Material Handling Checklist                                        |                       |    |                       |    |                       |    |  |
|--------|--------------------------------------------------------------------|-----------------------|----|-----------------------|----|-----------------------|----|--|
| Number | Criteria of Good Facility Layout                                   | Alternative<br>1      |    | Alternative<br>2      |    | Alternative<br>3      |    |  |
|        | · ·                                                                | Yes                   | No | Yes                   | No | Yes                   | No |  |
| 14     | storage usage on the spot if possible                              | ✓                     |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 15     | Flexible layout                                                    | ✓                     |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 16     | able to accommodate future expansion<br>plans                      | ✓                     |    | ~                     |    | ~                     |    |  |
| 17     | semi-finished goods inventory or<br>minimum WIP                    | ✓                     |    | ~                     |    | ~                     |    |  |
| 18     | minimum of material being processed                                | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 19     | maximum use of the entire production floor                         |                       | ~  |                       | ~  |                       | ~  |  |
| 20     | sufficient storage space                                           | ✓                     |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 21     | provision of sufficient space between<br>equipment                 | ~                     |    | ~                     |    | ~                     |    |  |
| 22     | buildings erected around the layout                                | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 23     | materials delivered to the workers and taken from work             |                       | ~  |                       | ~  |                       | ~  |  |
| 24     | as little as possible on foot between<br>production operations     |                       | ~  |                       | ~  |                       | ~  |  |
| 25     | proper placement services for<br>production facilities and workers | ~                     |    |                       | ~  | ~                     |    |  |
| 26     | mechanical switching apparatus installed in the appropriate place  | ~                     |    | ~                     |    | ~                     |    |  |
| 27     | service function enough workers                                    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 28     | noise control dirt, dust, smoke, and moisture is adequate          | ~                     |    | ~                     |    | ~                     |    |  |
| 29     | processing time for a maximum total<br>production time             | ~                     |    | ~                     |    | ~                     |    |  |
| 30     | minimize the transfer of materials                                 | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 31     | Minimum redeployment                                               | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    | <ul> <li>✓</li> </ul> |    |  |
| 32     | separator does not interrupt the flow of materials and goods       | ~                     |    | ~                     |    | ~                     |    |  |
| 33     | material removal by a machine operator directly as possible        | ~                     |    | ~                     |    | ~                     |    |  |
| 34     | reduce the disposal of waste materials                             |                       | √  |                       | √  |                       | √  |  |
| 35     | appropriate placement for the receipt<br>and delivery              |                       | ~  | ~                     |    | ~                     |    |  |
|        | Total Yes                                                          | 2                     | 4  | 2                     | 6  | 2                     | 9  |  |
|        | Total No                                                           | 1                     |    | 9                     |    | 6                     |    |  |

Table 6. Material Handling Checklist

Material Handling Checklist of evaluation using 35 criteria nice layout obtained results for each alternative. The first alternative with a total of 23 yes votes and a total of not as much as 12. Alternative second with a total of 25 yes votes and a total of not as much as 10. Third alternative with a total of 28 yes votes and a total of not as much as 7. Therefore, a third alternative was selected and showed that alternative the third most applicable.

In the third alternative is not as much as there are a total of 6. These results prove

Factory Plastic Bag Layout Design (Lina Gozali)

the three alternative designs have limitations as 6 criteria, namely:

- 1) The minimum displacement distance
- processing combined with the removal of material
- the use of the entire production floor maximum
- materials delivered to the workers and taken from work
- 5) as little as possible on foot between production operations
- reduce the disposal of waste materials Minimum displacement distance criteria,

combined with the removal of material processing, material transfer criteria to be taken from the workers and the workplace, and as little as possible on foot between production operations are given a checklist is not due to the condition of the material displacement and the usina the displacement of tools and materials such as trolley dolly. This condition can be treated by using a conveyor or conveyor belt so that the operator does not have to waste time to move the processed materials. But the other one hand, companies should consider in terms of finance to use conveyor.

Criteria for the maximum use of the entire production floor is given a checklist is not due to the condition of the production floor is not made of two levels. These criteria can be addressed by increasing the production capacity so that the need for the engine to produce more.

Criteria reduce the disposal of waste materials checklist is not given because of the condition of the factory plastic bag certainly result in residual form of scrap and waste, but this plant already has a solution to cope with scrap and waste. Scrap and waste plastic bags collected and then transferred to ore recycled into plastic recycle plastic bags so it can be used again.

#### 7. CONCLUSION

Based on the stage of the plant layout design using SLP approach, to design the factory plastic bag with a capacity of 300 tons / month obtained the layout type of product layouts include:

 Facilities production floor, with a floor area of 931.02 m<sup>2</sup> production consists of three (3) main engine which includes:

Factory Plastic Bag Layout Design (Lina Gozali) area of mixer machine, extrusion machine area blown film cutting and sealing machine area with auto puncher, and packing area

2) Facilities supporting the production floor, with a total area of 1028.92 m<sup>2</sup> which includes: Raw Material Warehouse, Warehouse Supporting Materials, Finished Goods Warehouse, Shipping and Receiving, Office, office toilets, mosque, waste disposal, security entry Pos, Pos guard out, Lockers, car parking, motorcycle parking, truck parking, maintenance tools, Cooling towers, Qc inspection area, Compressor, and Toilet production space

After the calculation of floor area for the production floor facilities and supporting the production floor, the layout design was developed into three alternative design layout. Alternative layout then quantitatively evaluated by scoring method and evaluated qualitatively with material handling checklist sheet. From the evaluation performed quantitatively and qualitatively, the third alternative is the alternative layout was selected to proceed to the creation of templates and 3D. Although no third alternative has a total of as much as 6, a third alternative is best layout to be applied because it meets kriterira good layout.

#### 8. REFERENCES

- (a) Apple, James M. 1962. *Plant Layout and Material Handling*. New York: The Macmillan Company.
- (b) Hadiguna, RA, and Setiawan, H. 2008. *Layout Factory*. London: ANDI.
- Ζ, (c) Sutalaksana, lftikar Ruhana Anggawisastra, and John Н. Tjakraatmadja. 1979. Mechanical Work. Svstem Design London: Department of Industrial Engineering, Bandung Institute of Technology. (d) Tompkins, James A, John A. White, et
- (d) Tompkins, James A, John A. White, et al., 2010. *Facilities Planning*. Wiley: United States of America.
- (e) Wignjosoebroto, Sritomo. 2009. *Factory Layout and Material Moving* the third edition. Jakarta: Widya Guna.

# FACTORY PLASTIC BAG LAYOUT DESIGN IN ELITE RECYCLING INDONESIA EXTENSION

| ORIGINALITY REPORT |                     |              |                |
|--------------------|---------------------|--------------|----------------|
| 18%                | 10%                 | 8%           | 9%             |
| SIMILARITY INDEX   | INTERNET SOURCES    | PUBLICATIONS | STUDENT PAPERS |
| 2%                 | ff.telkomuniversity | -            |                |

| Exclude quotes       | On | Exclude matches | Off |
|----------------------|----|-----------------|-----|
| Exclude bibliography | On |                 |     |
|                      |    |                 |     |