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Abstract. Inverse-turbulent Prandtl number (a) is one of important parameters on RNG k-¢
turbulence model which represent the cascade energy of the flow, which occur in cylindrical
curved-pipe. Although many research has been done, turbulent flow in curved pipe is still a
challanging problem. The range of a of the basic RNG k-¢ turbulence model described by Yakhot
and Orszag (1986) with range 1-1.3929 has to be more specific on Reynolds number (Re) and
geometry. However, since the viscosity is sensitive to velocity and temperature, the specific value
of a is needed on specific range of Re. This paper is aimed to gain optimum o of the flow in curved
pipe with upper and lower Re which simulated numerically with CFD. The Re at the inlet side were;
Re = 13000 and Re = 63800 on cylindrical curved-pipe with /D of 1.607.The a were varied to 1,
1.1, 1.2, 1.3. The curved pipe was an cylindrical air pipe with 43mm inlet diameter. The
computational grid that is used for CFD numerical simulation with CFDSOF®, hexagonal-surface
fitted consist of 139440 cells. CFD simulation done with « varies by 1, 1.1, 1.2, dan 1.3. The wall is
assumed to zero-roughness. The CFD simulation generated several results; at Re 13000, the value
of o did not affect the turbulent parameter which also confirmed the basic therory of RNG k-¢
turbulence model that the minimum Re of a is 2.5 x 10*. At Re = 63800, the use of o of 1.1 shows
more turbulent flow domination on molecular flow. Lower eddy dissipation by 1.67%, increasing
turbulent kinetic energy by 2.2%, and Effective viscosity increase by 4.7% compared to a = 1.
Therefore, the use of o 1.1 is the most suitable value to be used to represent turbulent flow in curved
pipe with RNG k-¢ turbulence model with Re 63800 and /D 1.607 among others value that have
discussed in this paper.

Nomenclature

c, : proportional & constant (0.09) a, : Inverse Prandtl number (molecular)
C, : Kolmogorov constant (1.3-2.3) a : Inverse-Turbulent Prandtl number
E(k) :velocity fluctuation spectrum (m?/s) & : turbulent dissipation (m?/s%)

f : random force by velocity spectrum k : dissipation range

K : turbulent kinetic energy (m?* /s%) Vgss  total viscosity

P, : Turbulent Prandtl number v  turbulent viscosity (m7°/s)

v : velocity (m/s) Yy : molecular viscosity (kg /m. s)

D : density (kg/m?) vy : eddy viscosity (kg/m.s)

» : pressure (N /m?) uiu;  : Reynolds stress

Introduction

It is already known that turbulent flow is a very unique and specific flow. In order to get
analyzed, the flow can be modeled numerically by turbulence model. Turbulence model is
increasing greately in the past decades and has became more specific along with the need of more
detail flow analysis. A lot of parameters involves in turbulence model, constants and value with
specified and unspecified range. Among the RANS-based turbulence model, RNG k-¢ is a
promising turbulence model to predict swirling flow and scondary fow that attached [1-5]. Since
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turbulent flow also occur along with energy cascade with viscosity stratafication, turbulent Prandtl
number (Pr;) is one of important parameters which relates molecular viscosity and eddy viscosity.
Those flow parameters undoubtly occur in curved-pipe. As has investigated by Noorani et.al [6],
flow phenomena on turbulent flow in straight to curved pipe, flow at outside curve has much
smaller eddy than the mean condition thus flow with higher local Reynolds number along with
higher eddy viscosity than at mean of curve [7] and lead to secondary flow to occur. This paper uses
inverse-turbulent Prandtl number (o)) nomenclature instead of turbulent Prandtl number (o7’ =Pr,) in
order to describe the domination effect of eddy viscosity to thermal diffusivity since in this paper
there are insignificant effect of critical fluid phenomena.

Alhtough many numerical research has been done for analyze; experimentaly and numerically
inverse-turbulent Prandtl number, this value to be applied to RNG k-¢ turbulence model has to be
analyzed in more detail in order to gain better prediction of the flow phenomena. The value of
turbulent Prandtl number Pr; was initially described with Reynolds analogy (Pr, = 1) by Kays and
Crawford, which has been experimentally clarified and resulting the value of Pr; to 0,7-0,9 [8].
Although valid for some common fluid flow, the Reynolds analogy doesn’t predict satisfying result
in more complex geometry and has became an issue for RANS-based turbulence model since the o
has a wide range values [9].. Others research of this field also gained the range of a. Yakhot and
Orszag [10] has described the range of the value of inverse-turbulent Prandtl number for general
turbulent flow in RNG k-¢ turbulence model which range from 1-1.3939. However very few of
them gained the specific value of a, especially for the low inverse-turbulent Prandtl number cases
because of its difficulty [11]. Mohseni et.al (2012) developed the correlation for the o to a super
critical fluid flows with low Reynolds number k-¢ turbulence model with low Re [12].

Dong et.al (2002) also has investigated the effect of Prandtl number and Reynolds number Re =
10* in channel flow with LES turbulence model [11]. Furthermore Ould-Rouiss et.al (2010)
investigated the effect of turbulent Prandtl number on anular pipe with DNS use the turbulent
Prandtl number of 0,71 and shows that this parameter has caused near-wall flow spread to the mean
section and [13]. Subhas et.al presented more andvance work to develop new formula for the
turbulent Prandtl number [14]. These reserach and clarification of Reynolds analogy shows that the
turbulent Prandtl number is specific on RNG turbulence model. In order to get specific value of a at
specific range of Reynolds number of a cylindrical-curved pipe, part of Proto X-2a Bioenergy
Micro Gas Turbine that has been developed, range of sepcific a is needed. In the previous paper, the
authors concluded that with that geometry (fluid = air), the optimun inverse-turbulent Prandtl
number « is 1.3 at experimental data Re = 40900 with RNG k-¢ turbulence model. However, since
the viscosity is fllow parameters which sensitive to velocity and temperature, the reference of a is
needed on lower and upper value of Reynolds number. The performance of turbulence models are
highly depending on empirical parameters [12].

Therefore, flow in curved pipe simulated numerically with CFD, with RNG k-¢ turbulence
model. The selection of the Reynolds number was driven by the lower and the upper value, where at
the lower value the compressor of the micro gas turbine is assumed to supply minumum air to the
pipe, and at the upper value of Re refers to maximum air velocity at which the compressor works at
its maximum condition at given constraint of input energy supplied; Re = 13000 and Re = 63800
respectively. Therefore the inverse-turbulent Prandtl number (&) were varied to 1, 1.1, 1.2, 1.3 (Pr,
= 0,7-0,9) which have been used in many numerical study. The wall is assumed to zero-roughness.
This paper is aimed to gain the specific value of inverse-turbulent Prandtl number (o)) in RNG k-¢
turbulence model in two extreme difference Re of cylindrical-curved pipe with /D = 1.607; Re =
13000 and Re = 63800.

Research Methodology

Governing Equations

Boussinesq Hypothesis. Momentum transfer caused by turbulent flow can be modeled by the use
of eddy viscosity. Molecular viscosity and eddy viscosity occured in flow caused the Reynolds
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stress. The Reynolds stress can be defined as velocity gradient [15], [16], [17]. Therefore, total
viscosity of the flow became: [2].

puiy ——pkﬁ —I-( [a ‘—l-%"l-]) (1
Vepp =Vp TV (2)
v =c, & 3)

Kolmogorov Theorem. This theorem described how energy is transfered from large scale eddies
to small scale eddies, and how the energy is dissipated [1], [2], [10]. In turbulent flow, amount of
energy supplied can be assumed equal to be dissipated on certain rate. In smale scale eddies, this
change of energy related to the flow time scale generally. Therefore, this energy rate is small
compared to energy dissipated [18]. In Kolmogorov theorem, velocity fluctuations tends to be
universal, where the amount of energy assumed only depends on turbulent dissipation rate (&) and
length scale (/) [10], [19].

E(k) = C, e 235/ (4)

Navier-Stokes Equation. In Newtonian fluid, flow acceleration and forces acompany related with
Navier-Stokes equation [20]. The RNG k-¢ turbulence model uses the normalized Navier-Stokes
equation:

=(v.V)v=Ff —i?p + v, Viv (5)

Inverse-Turbulent Prandtl Number. Inverse-Turbulent Prandtl number, a described the ratio
between thermal diffusivity and turbulent viscosity:

= -1 — i
o = Pt - (6)
Generally, with temperature transport on horizontal way assumed only to be affected by
temperature fluctuation by temperature gradient, value of & assume equal to one [18]. Furthermore,

the range of a 1.1-1.3929 also can be considered to flow analysis [10]:

a-13529 | 26321 | a423925 |PIETF 4 o
ap—1.3929 gy +2.3929 vr

In general fluids, the heat transfer is dominated by molecular diffusion, the thermal resistance is
distributed over the entire cross-section, and the turbulent Prandtl number, @, assumed one [21].

Transport Equations. RNG k-¢ turbulence models is a RANS-based turbulence model with two
transport equation; & (turbulence kinetic energy) and ¢ (turbulent dissipation).
Transport equation of k£ [10], [2]

_-|- (w.V)K = =< (ah+a-'-) —£+ = OxVr sK (8)
Transport equatlon of ¢ [10]

DE a7, _ 8 E

Pl (E‘x + E*l) 1. ?215 -I- cx vaxl )

Geometrical Model And Expemmem‘al Set-Up
Pipe geometry and CFD model of the cylinderical durved-pipe are represented on Fig. 1.

O\ N Tk = wston Re-:om Jen 09 2
L1 3 \ cd 5 Jso
R GROUP

Fig 1. (a) Plpe geometry model and (b) CFD model
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CFD Model. The computational grid that is used for CFD numerical simulation with CEDSOF®
is shown Fig. 1. The grid was hexagonal-surface fitted 139440 cells. CFD simulation done with
inlet Reynolds number of 13000 and 63800 and turbulent Prandtl number o varies by 1, 1.1, 1.2,
dan 1.3. The von-Karman constant is assumed to 0.41, zero-roughness wall.

Results and Discussion

Grid dependency of the curved-pipe geometry and numerical validation has done to avoid
numerical error. The result from several turbulent flow shown on figs 2-10. The results from «
compared to the result from o =1 at which the molecular viscosity is assumed equal to turbulent
viscosity. The predicted of velocity magnitude is shown on figs 2 and 3 with Re = 13000 and 63800
respectively. The variation of a does not predict to much different velocity magnitude profile except
by their velocity. This is because figurel and 2 show the velocity magnitude at which the vector
resultant of velocity. The inclination of pipe is the main reason why the velocity profile is
represented by velocity magnitude. Generally, for both Re 13000 and Re 63800, the velocity profile
on cross section at curved show secondary flows. CFD simulation at Re = 13000 shows there is no
significant difference between all varied inverse-turbulent Prandtl number (). Furthermore, similiar
velocity profile also resulted at Re = 63800, although slightly different prediction shown with o =
1.1 at which velocity profile was different from the others varied a. This result is surprising since
the velocity profile was a resultant from velocity component. At Re = 13000, Eddy dissipation on
fig 4 shows similiar result for all varried inverse-turbulent Prandtl number (o). The eddy dissipation
with maximum value of 2.17E-02 m?/s® concentrated at zone at which secondary flows occur. This
condition confirmed equation (3) relationship with turbulent kinetic energy which shown on fig 6
where maximum kinetic energy transfered at whit dissipation occur.

Difference prediction shows of eddy dissipation at Re = 63800 in fig 5. While the use of aa = 1.2,
and 1.3 shows the same maximum value of eddy dissipation of 4.67 m*/s* which similiar to « 1, the
use of a = 1.1 is about 1.67% lower. This condition also can be seen in velocity magnitude profile
where the use of a = 1.1 has increased maximum velocity at outer side about 1.1%. With higher
prediction of velocity, dissipation less occur, pararel with turbulent kinetic energy where 2.2% more
kinetic energy transfered et o = 1.1. Figure 9 show the efffective viscosity at Re = 63800. Similiar
to figs 3,5, and 7, the effective viscosity with a = 1.1 shows different trends with others varied a.
Instead of similiar to o 1, 1.2, and 1.3 which predicted to had similiar maximum value 10.6 kg/m-s,
the use of a 1.1 shows increasing effective viscosity of 4.7% than others. This is beacuse according
to equation (3), the increasing of turbulent kinetic energy by 2.2% as shown on fig 7 and the
decrasing of eddy dissipation by 1.67% as shown on fig 5 really affected the effective viscosity.
Furthermore, the increrasing effective viscosity shows that turbulent flow captured more clearly
than other values of varied a. It is clear that at Re = 13000, the varied a did not affect the prediction
results on all turbulent flow parameters. This result is consistent with relationship between
molecular viscosity and turbulent viscosity in equation (7) which proposed by Yakhot and Orszag
et.al [22] valid for 2.5 x 10* < Re < 10°. This also explained that at Re = 13000, turbulent flow is
much less dominant than the molecular flow.

According to transport equation of k in figure (8), the increasing value of effective viscosity
clearly shows also increasing the production and diffusion terms and the decreasing of eddy
dissipation also decrease the dissipation on k transport equation and on the ¢ transport equation as
well. In generall, according to the result with Re = 63800 on a 1, 1.1, 1.2, and 1.3, the use of a 1.1
shows that turbulent viscosity is more dominant than molecular viscosity and therefore shows the
viscosity stratafication more fairly. This value is close with o described by Kays et.al at which
found a of 1,16 in circular tube [8]. According to equation (7) shows with a 1.2 and 1.3, the
turbulent viscosity is too dominant to molecular viscosity. Furthermore, based on the characetristics
if turbulent flow and turbulent flow parameters; increasing turbulent kinetic energy and effective
viscosity, a 1.1 represent the turbulent flow at the curved-pipe better than other values of a.
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Fig 3. Velocity Magnitude; Re = 63800
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Fig 4. Eddy Dissipation; Re = 13000
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Fig 5. Eddy Dissipation; Re = 63800
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Turbulent Kinetic Energy
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Fig 6. Turbulent Kinetic Energy; Re = 13000
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Fig 7. Turbulent Kinetic Energy; Re = 63800



42

Mechanical Engineering and Applied Mechanics

Effective Viscosity

TS TS
191600 157600
15400 15400
1766400 1766400
170 170
1656400 1656400
156400 15400
152400 152400
LasEo LasEo
130400 130400
1326000 1326000
135400 1266+00
115400 115400
112E400 112E400
106400 100400
990601 991601
s20£01 3501
560 5801
90 7950
raceor rareon
so0ED so7ED
9401 9401
2807 2807
10701 10701
39607 39607
33001 33001
200201 200201
136 01 136 01
13201 13201
oo1E 661E02
157205 157205

RNG k-epsilon; Re = 13000; Alfa =1 Jul 31 2014 RNG k-epsilon; Re = 13000; Alfa = 1.1 Jul 31 2014
} Effective Viscosity (Kg/M-S) CFDSOF } Effective Viscosity (KgM-S) CFOSOF
Lmax = 1.981E+00 Lmin = 1.870E-05 AIR GROUP Lmax = 1 962E+00 Lmin = 1.870E-05 AIR GROUP
e e
191400 1926400
155400 155400
1766400 1766400
17ZE00 17ZE00
1656400 1656400
156400 156400
152400 152400
LasEo LasEo
130400 130400
1326000 1326000
135400 135400
115400 115400
112E400 11ZE400
106400 100400
990601 991601
22401 22601
858601 858601
792201 792201
726801 726801
s60E07 s60E07
Sae0m Sae0m
207 207
ABZE01 ABZE01
39607 39607
330601 330601
200201 200201
136 01 136 01
132 01 13201
o60E2 661E02
157205 157205

v

RNG k-epsilon; Re = 13000; Alfa=12
Effective Viscosity (Kg/M-S)
Lmax = 1.981E+00 Lmin = 1 870E-05

Jul 31 2014
CFDSOF
AIR GROUP

A

RNG k-epsilon; Re = 13000; Alfa = 1.3
Effective Viscosity (KgM-5)
Lmax = 1.881E+00 Lmin = 1.870E-05

Jul 31 2014
CFDSOF
AIR GROUP

Fig 8. Effective Viscosity, Re = 13000
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Fig 9. Effective Viscosity, Re = 63800



Applied Mechanics and Materials Vol. 758 43

Conclusions

CFD simulation with RNG k-¢ has been performed. The result revealed are follows; at Re =
13000, the variation of inverse-turbulent Prandtl number, « 1, 1.1, 1.2, and 1.3 shows insginificant
result. This indicated that at this Re, turbulent flow occur in curved-pipe is less-dominant than the
molecular flow. This result also confirmed the theory proposed by Yakhot & Orszag that the
minimum value of Re that a can affect the predicted flow is 2.5 x 10*. Further more, at Re = 63800,
the use of inverse-turbulent Prandtl number a of 1.1 shows more turbulent flow domination on
molecular flow. This condition indicated by several turublent flow parameters; lower eddy
dissipation by 1.67%, increasing turbulent kinetic energy by 2.2%, and Effective viscosity increase
by 4.7% compared to o = 1. Therefore, the use of a 1.1 is the most suitable value to be used to
represent turbulent flow in curved pipe with /D of 1.607 with RNG k-¢ turbulence model among
others value that has been discussed in this paper.
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