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Preface

This proceedings volume contains the papers of the 14th International Conference
on Computing and Information Technology (IC2IT 2018) held on July 5–6, 2018,
in Chiang Mai, Thailand. IC2IT is a platform for researchers to meet and exchange
knowledge in the field of computer and information technology. The participants in
IC2IT present their current research new findings and discuss with partners to seek
new research directions and solutions as well as cooperation.

Springer has published the proceedings of IC2IT in its well-established and
worldwide-distributed series on Advances in Intelligent and Soft Computing,
Janusz Kacprzyk (Series Editor). This year there were total 88 submissions from 16
countries. Each submission was assigned to at least three program committee
members, and at least two members must accept a paper in order to include in the
proceedings. The committee accepted 33 papers for presenting at the conference
and publishing the papers in the proceedings. The contents of the proceedings are
divided into subfields: Data Mining, Machine Learning, Natural Language
Processing, Image Processing, Network and Security, Software Engineering, and
Information Technology.

We would like to thank all authors for their submissions. We would also like to
thank all the program committee members for their support in reviewing assigned
papers and in giving good comments back to the authors to revise their papers. In
addition, we would like to thank all university partners in both Thailand and
overseas for academic cooperation. Special thanks also go to the staff members
of the Faculty of Information Technology at King Mongkut’s University of
Technology North Bangkok who have done many technical and organizational
works. Without the painstaking work of Dr. Watchareewan Jitsakul, the proceed-
ings could not have been completed in the needed form at the right time.



Finally yet importantly, we would like to thank all the speakers and audiences
for their contributions and discussions at the conference that made the conference a
success. We hope that the proceedings IC2IT will be a good source of research
papers for future references with the state of the art.

April 2018 Herwig Unger
Sunantha Sodsee
Phayung Meesad
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Robust Kurtosis Projection Approach
for Mangrove Classification

Dyah E. Herwindiati1(&), Janson Hendryli1, and Sidik Mulyono2

1 Faculty of Information Technology, Tarumanagara University, Jakarta,
Indonesia

{dyahh,jansonh}@fti.untar.ac.id
2 The Indonesian Agency for the Assessment and Application of Technology

(BPPT), Central Jakarta, Indonesia
sidik.mulyono@bppt.go.id

Abstract. Mangroves are coastal vegetations that grow at the interface between
land and sea. It can be found in tropical and subtropical tidal areas. Mangrove
ecosystems have many ecological roles spans from forestry, fisheries, environ-
mental conservation. The Indonesian archipelago is home to a large mangrove
population which has enormous ecological value. This paper discusses man-
grove land detection in the North Jakarta from Landsat 8 satellite imagery. One
of the special characteristics of mangroves that are distinguishing them from
another vegetation is their growing location. This characteristic makes mangrove
classification using satellite imagery non trivial task. We need an advanced
method that can confidently detect the mangrove ecosystem from the satellite
images. The objective of this paper is to propose the robust algorithm using
projection kurtosis and minimizing vector variance for mangrove land classifi-
cation. The evaluation classification provides that the proposed algorithm has a
good performance.

Keywords: Kurtosis � Mangrove � Multivariate � Projection pursuit
Robust � Satellite imagery � Vector variance

1 Introduction

In this paper, we discuss a robust kurtosis projection minimizing vector variance for
mangrove detection. Robust kurtosis projection minimizing vector variance is a pro-
cedure which combines two advantages of both kurtosis projection pursuit and robust
estimation minimizing vector variance. Projection pursuit is a technique that explores a
higher to lower dimensional space by examining the marginal distributions of low
dimensional linear projections.

Robust statistics has been developed since almost sixty years ago. Huber [16]
introduced the robust estimator because the assumptions of normality, linearity, and
independence stucked on the classic estimation are frequently not satisfied. The major
goal of robust statistics is to develop the statistics measures that are robust against one
or more outliers hidden in the dataset [9]. There are several outlier definitions; the word
“outlier” is closed to the word “inconsistent”. Hawkins [6] defined an outlier as an

© Springer International Publishing AG, part of Springer Nature 2019
H. Unger et al. (Eds.): IC2IT 2018, AISC 769, pp. 93–103, 2019.
https://doi.org/10.1007/978-3-319-93692-5_10



observation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism. Since the 20th century, the robust method has
been used by scientists to eliminate the influence of anomalous observations in
numerous applications.

The robust kurtosis projection minimizing vector variance method was proposed by
Herwindiati et al. [4]. The algorithm works in two stages. In the first stage, it has been
proposed the projection approach finding the orthonormal set of all vectors that
maximize the kurtosis of the projected standardized data. This approach improves on
the slow convergence rate proposed by Friedman [11]. In the second stage, we estimate
robust covariance matrix minimizing vector variance to identify the data contamination
which is the labeled outlier.

Robust minimum vector variance (MVV) is a measure minimizing vector variance
to obtain the robust estimator. Robust MVV was proposed by [3]. The multivariate
dispersion vector variance (VV) is a measure of dispersion. Geometrically, VV is a
square of the length of the diagonal of a parallelotope generated by all principal
components [13]. Robust kurtosis projection has a good performance and robust to
detect data contamination in a low, moderate, high, even very high percentage.

Mangroves are coastal vegetations that grow at the interface between land and sea
[12] and can be found in tropical and subtropical tidal areas. Mangrove ecosystems
have many ecological roles; spans from forestry, fisheries, and environmental con-
servation [1]. The Indonesian archipelago is home to a large mangrove population
which has enormous ecological values.

The input data of this research is derived from Landsat 8 satellite imagery. One of
the special characteristics of mangroves that are distinguishing them from another
vegetation is their growing location. Detecting mangrove might not be enough by
focusing only on NIR, red, and green spectral band from satellite imagery, but also the
existence of the water, particularly the sea, around the ecosystem. Because of that fact,
existing approaches for detection using vegetation indices cannot effectively detect the
mangrove ecosystem. We need an advanced method that is able to confidently detect
the mangrove ecosystem from satellite images.

The objective of this paper is to propose a robust algorithm using kurtosis pro-
jection and minimizing vector variance for mangrove detection. The case study is the
area of coastal and waters of North Jakarta, Indonesia.

2 Case Study - Mangrove

Mangroves are coastal vegetations that grow at the interface between land and sea [12]
and can be found in tropical and subtropical tidal areas. Mangrove ecosystems have
many ecological roles, spans from forestry, fisheries, and environmental conservation
[1]. Nutrient cycling and fish spawning grounds are other services provided by the
mangrove ecosystem [5]. The erosion of coastal areas can also be prevented by
mangrove forests. Lately, mangrove ecosystems have also been studied as the object of
conservation for reducing the effects of the tsunami in Asia [8].

94 D. E. Herwindiati et al.



The Indonesian archipelago is home to a large mangrove population which has
enormous ecological value. The total area of mangrove forests in Indonesia accounts
for 49% of mangroves in Asia, followed by Malaysia (10%) and Myanmar (9%) [2]. In
spite of that, it is estimated that the area of mangrove forests in Indonesia has been
reduced by about 120,000 hectares from 1980 to 2005, mainly due to the changes in
land use for agriculture. In 2007, the ministry of forestry released a report stated that
70% of the total area of the mangrove ecosystem in Indonesia, which is 7,758,410.595
hectares, are damaged. Conservation of mangroves in Indonesia should be prioritized
for the benefits of the environment and ecosystems [5].

Some of the mangrove conservation areas in Indonesia are in the northwest of Java,
particularly in the North Jakarta, Tangerang, and Bekasi region. Figure 1 shows
Google Earth image at North Jakarta, Indonesia. According to the Department of
Forestry West Java province, 1,000 hectars of the mangrove forest at Jakarta bay in
1977 have been reduced to only 200 hectares. The mangrove forest at the area faces
serious threats from urban development and waste, in addition to the lack of conser-
vation plans from the government.

The near-infrared (NIR), red, and green spectral bands are often used for vegetation
detection from satellite images. The normalized difference vegetation index (NDVI),
which is the ratio of the difference of the red and NIR spectral band divided by their
sum, is widely used in remote sensing studies of vegetation [14]. However, the char-
acteristics of mangrove vegetation might be different, so that some vegetation indices
may not be able to detect it well. One of the special characteristics of mangroves is their
growing location, that is the coastal areas. Detecting mangrove might not be enough by
focusing on NIR, red, and green spectral band, but also the existence of the sea around
the ecosystem. Furthermore, the location of mangrove can coincide with another green
vegetation, as in Fig. 2, and make it harder for remote sensing methods to correctly
detect it.

Fig. 1. The area of mangrove forest at North Jakarta, Indonesia
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3 The Kurtosis Projection Approach Using Minimum Vector
Variance

The kurtosis coefficient is a measure of how peaked or flat the distribution is. The
dataset with high kurtosis tends to have heavy tails and sharp density peak near the
center point. Kurtosis can be formally defined as the standardized fourth population
moment about the mean.

K ¼ E X � lð Þ4

E X � lð Þ2
� �2 ¼

l4
r4

ð1Þ

Projection pursuit [11] is a technique aiming at identifying low dimensional pro-
jections of data that reveal interesting structures. The framework of projection pursuit is
formulated as an optimization problem with the goal of finding projection axes that
minimize or maximize a measure of interest called projection index. Projection pursuit
is a technique that explores a high dimensional data by examining the marginal dis-
tributions of low dimensional linear projections. The two basic components of pro-
jection pursuit are its index and its algorithm [15].

The algorithm of robust kurtosis projection minimizing vector variance
(MVV) works in two stages. In the first stage, the projection approach finds the
orthonormal set of all vectors that maximize the kurtosis of the projected standardized
data. The algorithm of projection is inspired by Pena and Prieto [7]. In the second stage,
we estimate robust covariance matrix MVV to estimate spectral characteristic of
mangrove

Let X ¼ x1; x2; . . .; xnð Þ0 be a data matrix of size n� p as the observation result of p
variables to n individual objects. The orthogonal projection of each observation results
on to one dimensional space spanned by d is yi ¼ d0xi where d is a unit vector in R

p.

Fig. 2. The challenge of mangrove detection from satellite imagery
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As the projected data is written as Y ¼ y1; y2; . . .; ynð Þ, the kurtosis of the projected data
is formulated as in Eq. 2.

K ¼
1
n

P
i2Nn

yi � tð Þ4
s4

ð2Þ

where t ¼ 1
n

P
i2Nn

yi and s2 ¼ 1
n

P
i2Nn

yi � tð Þ2 are the sample mean and the sample of
the data Y respectively. It should be noted that s4 is the square of s2 and Nn is the set of
all natural numbers less than or equal to n.

Centering and scaling transformation of Y gives a new data Z ¼ z1; z2; . . .; znð Þ
where for all i 2 Nn, zi ¼ yi�t

s . Since the sample mean of Z is 0 and the sample
varaiance of Z is 1, the kurtosis of Z can be formulated as in Eq. 3.

K ¼ 1
n

X
i2Nn

z4i ð3Þ

The sample mean t and the covariance matrix S of the data matrix X can be defined
as in Eqs. 4 and 5. Then, the kurtosis K can also be written as in Eq. 6.

t ¼ 1
n

X
i2Nn

xi ð4Þ

S ¼ 1
n

X
i2Nn

xi � tð Þ xi � tð Þ0 ð5Þ

K ¼ 1
n

X
i2Nn

d
0
xi � tð Þffiffiffiffiffiffiffiffiffi
d0Sd

p
� �4

ð6Þ

Consider the objection function f defined as in Eq. 7. We assume that j1 is the
eigen value of 1

n

P
i2Nn

d0yið Þ2yiy0
i and d is the corresponding eigenvector. Multiplying

Eq. 7 by d
0
from the left gives us the following result in Eq. 8.

f dð Þ ¼ 1
n

X
i2Nn

d0yið Þ4�k d0d � 1ð Þ ð7Þ

j1 ¼ d0
1
n

X
i2Nn

d0yið Þ2yiy0
i

� �
d ¼ 1

n

X
i2Nn

d0yið Þ4¼ K ð8Þ

So the unit vector d that maximizes K is the eigenvector of 1
n

P
i2Nn

d0yið Þ2yiy0
i

corresponding to the maximum eigenvalue of that matrix. We will call such eigen
vector by d1. The Fig. 3 illustrates the good performance of kurtosis projection from
X ¼ x1; x2; . . .; xnð Þ 2 R

3 to d1.
The measures of kurtosis relate to the fourth moment of the data and emphasize the

tails of the distribution. This paper use the algorithm of robust projection of maxi-
mizing kurtosis which was discussed by [4] for classification of mangrove. The good
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performance of robust approach will be applied for detection and mapping of mangrove
land in Jakarta.

The kurtosis projection approach is used in the initial step of robust kurtosis pro-
jection minimizing vector variance. Suppose a matrix data X ¼ x1; x2; . . .; xnð Þ0 of size
n� p, t is the sample mean, and S is the sample covariance matrix of X, the kurtosis
projection algorithm can be derived as follows:

1. Standardize the matrix X such that the projected data has mean 0 and variance 1.

yi ¼ S�
1
2 xi � tð Þ ð9Þ

2. Find the first unit vector d1 as the eigenvector of 1
n

P
i2Nn

d0yið Þ2yiy0
i corresponding to

the maximum eigenvalue of that matrix.
3. For k ¼ 2; 3; . . .; p, find the k-th unit vector dk as the eigenvector of

I �Pk�1
j¼1 djd

0
j

� �
1
n

P
i2Nn

d0yið Þ2yiy0
i corresponding to the maximum eigen value of

that matrix. The output is an orthonormal set of all vectors that maximize the
kurtosis d1; d2; . . .; dp.

4. Find the projection zi ¼ d0y.

Kurtosis projection provides excellent results for detection of multivariate labeling
outlier with very small and small contamination in the dataset, but it fails on a moderate
percentage of data contamination. To improve the performance, the algorithm of robust
kurtosis projection minimizing vector variance was proposed by [4].

Robust minimum vector variance was proposed by Herwindiati [3] for identifying
multivariate outlier labeling. MVV estimator is the robust high breakdown point, i.e.
n�2 p�1ð Þ

2n . Geometrically, vector variance (VV) is a square of length of parallelotope
diagonal generated by all principal components of X [14].

Fig. 3. Illustration of kurtosis projection based on simulation
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Assume a random sample X1;X2; . . .;Xn of a p-variate, the estimator MVV is the
pair TMVV ;CMVVð Þ having minimum square of diagonal length of the parallelogram.
The robust MVV algorithm was described by [3].

TMVV ¼ 1
n

X
i2H Xi ð10Þ

CMVV ¼ 1
n

X
i2H Xi � TMVVð Þ Xi � TMVVð ÞT ð11Þ

Robust kurtosis projection minimizing vector variance is an effective method to
identify the multivariate outliers in the high dimension. In the simulation experience,
robust kurtosis projection using MVV has a breakdown point nearing 0.5. The measure
indicates that the robust kurtosis projection method provides results that can be trusted
until the half of the data is contaminated [5].

The algorithm of robust kurtosis method can be briefly explained as follows:

1. Find the orthonormal set of all vectors that maximizing kurtosis ~d1;~d2; . . .;~dp
n o

.

2. Compute MVV robust estimators: the location and scale estimator.

The detailed computation for MVV robust estimator can be found in [3–5].

4 The Mangrove Classification

The supervised mangrove classification will be done in two processes: training and
testing process. To conduct the training process, the algorithm of robust kurtosis
projection is used for the estimation of mangrove and non-mangrove’s spectral.

The mangrove and non-mangrove area for the training and testing purposes can be
located visually from Google Earth; and by using the Global Mapper and ENVI
software, the Landsat images can be cropped according to the coordinates. The data
retrieved from the satellite images are the spectral values of each pxiel.

The mangrove vegetation is detected from the Landsat 8 satellite imagery which
can be freely downloaded from http://glovis.usgs.gov. For the model training process,
we use North Jakarta area which is cropped using the Global Mapper software. Sub-
sequently, 300 points are selected by visual inspection of the area from Google Earth
which proportionally represents mangrove, water area, and soil. Meanwhile, for testing
and evaluating the trained model, we use the Greater Jakarta area. Therefore, the
advantage of our model is that it can learn from a small training dataset size of 300
locations to detect much larger area (more than a million pixels in the testing data). The
illustration of the training data can be seen in Fig. 4.

The classification step is conducted by using the spectral reference in the training
step. For each satellite image pixels from the training data, our model learns the
characteristics of mangrove vegetation, water, and soil.
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The spectral references are very useful for mangrove classification process. Let
W1;W2; . . .;Wn be the pixels of the North Jakarta area having p-variates. The mapping
of mangrove is conducted by checking the similarity between each pixel Wk, for
k ¼ 1; 2; . . .; n, and the spectral references. Each pixel is classified into one of the three
classes based on the value of the smallest distance. The pixel of Wk is classified as
mangrove if its distance with the mangrove spectral reference is the smallest one.
Figure 5 shows the mapping result of mangrove detection in North Jakarta.

The classification result is evaluated in two experiments. Google Earth imagery and
our ground truth are used as the evaluation data. In the first experiment, we choose two
areas that are classified as mangrove and non-mangrove. We compare the results of our
classification model to the actual land cover. The visualization of this experiments can
be seen in Fig. 6.

Fig. 4. Illustration of cropping data for training process from the Landsat 8 satellite imagery
(band 1 and band 3)

Fig. 5. The mapping of mangrove in the north of Jakarta on 2015
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In the second experiment, we compare two results of classification, the classifi-
cation based on the robust kurtosis projection and the classification using the classical
method. Figure 7 illustrates the comparison. The failure of detection is found in the
classical method; the existing mangrove land is detected as non mangrove land at the
coordinates (Lat: 6.111449; Long: 106.768597). This tells us that robust approach has
better performance than the classical method, see Fig. 7.

The arithmetic mean ~�X is often considered as a location estimator in the classical
method. The arithmetic mean is the sum of a collection of numbers divided by the
number of numbers in the collection. In this research we build the classical distance for
classical detection of mangrove land. The distance measures the similarity of an every

pixel to the arithmetic mean ~�X. The classical distance is very sensitive to an anomolous
observation or an outlier. The occurrence of one or more outliers shifts the mean vector
toward outliers and the covariance matrix becomes to be inflated.

Fig. 6. Evaluation of the first experiments on the performance of mangrove classification using
robust kurtosis projection
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5 Remark

The experiments and the evaluations prove that the robust kurtosis projection is an
effective method that can be considered for mangrove classification. The process of
mangrove land detection is not trivial. The mangrove land detection is different from
the detection of green land. From the research experience, we need an advanced
method that can confidently detect the mangrove ecosystem from satellite imagery. The
special characteristics of mangrove is its growing location that can coincide with other
green vegetation. This characteristic causes failure in mangrove detection. The
empirical results provide strong evidence that the robust kurtosis projection has good
performance for mangrove classification.

This study is our preliminary research. Regarding to the study results, we will use
the robust kurtosis projection method for our further research; that is the mapping of
mangrove land in the Central Java Province Indonesia.

Fig. 7. The performance comparison of robust kurtosis projection performance and classical
method for mangrove classification
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